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ABSTRACT

This work proposes an extension to the Virtual Reference Feedback Tuning (VRFT) method by
adding an H∞ robustness constraint to the optimization problem, which is solved by metaheuristic
optimization. The estimation of the H∞ norm of the sensitivity function is addressed in a data-
driven fashion, based on the regularized estimation of the impulse response of a system. Among
the available types of metaheuristics, four different swarm intelligence algorithms are chosen
to be evaluated and compared. Two real-world inspired examples, inspired in the structure of
dc-dc converters like Boost/Buck-Boost and SEPIC, are used to test and illustrate the proposed
method.

Keywords: Data-driven control. Robust control. Swarm intelligence algorithms. Virtual Refer-
ence Feedback Tuning.
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RESUMO

Este trabalho propõe uma extensão ao Método da Referência Virtual adicionando uma restrição
de robustez H∞ ao problema de otimização, que é resolvido por otimização metaheurística.
A estimativa baseada em dados da norma H∞ da função de sensibilidade é feita a partir da
estimativa da resposta ao impulso do sistema. Dentre as metaheurísticas disponíveis, quatro
diferentes algoritmos de inteligência de enxame são escolhidos para serem aplicados ao problema
proposto e comparados entre si. Dois exemplos inspirados na estrutura de conversores cc-cc
como Boost/Buck-Boost e SEPIC são abordados para ilustrar o método proposto.

Palavras-chave: Controle baseado em dados. Controle robusto. Algoritmos de inteligência de
enxame. Método da Referência Virtual.
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1 INTRODUCTION

The inherent complexity of several processes of different natures sometimes requires
the designer to simplify the mathematical modeling of the plant (NISE, 2000), in order to save
time or to in fact obtain a model, which may be too complex to be done without simplifications
(CHAUDHURI; CHAKRABORTY; CHAUDHURI, 2012; XIE; KAMWA; CHUNG, 2021). The
obtainment of a precise model, required to design a satisfactory controller for grid operation, is
one example of a complex task related to the modeling phase (CHAUDHURI; CHAKRABORTY;
CHAUDHURI, 2012). For some dc-dc converters, the control techniques assume the existence
of a very accurate model (KAZIMIERCZUK, 2008; KOBAKU; PATWARDHAN; AGARWAL,
2017), which is a challenge to the designer, since power converters in general are nonlinear.
Another situation that presents some difficulty to the designer is the obtention of low order
controllers for more complex plants, which are vastly applied in industry (AGUIAR et al., 2018;
THARANIDHARAN et al., 2022; TUDON-MARTINEZ et al., 2022; TAN et al., 2022). This
difficulty can be originated from a poor modeling, since the process is complex, and/or from the
limited performance of the chosen controller structure (KEEL; BHATTACHARYYA, 2008).

Most of the aforementioned problems can be suppressed with the use of data-driven
control design techniques (REMES et al., 2021a; ZENELIS; WANG, 2022; HUANG et al., 2022),
which overcome the need of a model as well as model-originated dilemas, such as the dilema
on representativity and complexity, since important aspects of the system are contained in data
and are weighted accordingly through the optimization criteria. Some data-driven approaches
require several batches of data (i.e., several plant experiments) as Iterative Feedback Tuning
(HJALMARSSON, 1998) and Iterative Correlation-based Tuning (KARIMI; MIŠKOVIĆ; BON-
VIN, 2004). On the other hand, methods as the Virtual Reference Feedback Tuning (VRFT)
(CAMPI; LECCHINI; SAVARESI, 2002), the Virtual Disturbance Feedback Tuning (VDFT)
(ECKHARD; CAMPESTRINI; BOEIRA, 2018), and the Optimal Controller Identification (OCI)
(CAMPESTRINI et al., 2017) require only a single batch of data. Executing only a single
experiment to design a controller in a data-driven fashion is a desirable feature, since it results in
simpler experimentation, less memory requirements, and an overall less tedious process. Among
those, the VRFT poses as a simpler algorithm that can be used to obtain a controller with a
desired reference tracking dynamics. Thus, this work is based on the VRFT method (CAMPI;
LECCHINI; SAVARESI, 2002; CAMPESTRINI et al., 2011; BAZANELLA; CAMPESTRINI;
ECKHARD, 2012).

Considering low order controllers, robustness is a frequent topic of discussion (PÉREZ;
LLOPIS, 2018; ALCÁNTARA; VILANOVA; PEDRET, 2013), since the simplified modelling
may result in unsatisfactory controller performance, as well as it might not consider the process’
uncertainties in its formulation. Some low order controller classes may not be able to achieve
the required controller performance defined for the reference model. Despite the existence of
design guidelines, it is not possible to know a priori if the chosen reference model is (exactly)
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satisfactory and can really be achieved by the defined controller class. Such choices of reference
model and/or controller class might lead to poor performance and poor robustness of the closed-
loop system (BAZANELLA; CAMPESTRINI; ECKHARD, 2012). Recently, to suppress some
of the aforementioned problems regarding robustness, the inclusion of a robustness criteria in
the VRFT design in a systematic fashion has been done (CHILUKA et al., 2021), at the expense
of: i) more experiments, since the proposed systemic design method regards a trial-and-error
procedure in the VRFT design until the desired robustness value is achieved, which essentially
removes one of the greatest advantages of the VRFT - being a one-shot method; and ii) iterative
procedures like this usually require more background knowledge from the designer to choose a
reference model and to set requirements of the closed-loop dynamic behavior.

Nevertheless, knowing that robustness can be measured by the H∞ norm of the sensitivity
transfer function of a closed-loop system (SKOGESTAD; POSTLETHWAITE, 2005), this work
proposes the inclusion of an H∞ norm constraint in the VRFT cost function maintaining its most
attractive feature: the necessity of only a single batch of data. The constraint is added to the cost
function in the form of a penalty (LUENBERGER; YE, 2015), spoiling the convex behavior of the
VRFT cost function. Considering non-convex cost functions, classical optimization techniques
often result in a solution that is not sufficiently close to the solution point (LUENBERGER;
YE, 2015). For that reason, metaheuristic optimization is used in literature when a convex
approximation cannot be obtained for a non-convex cost function (TALBI, 2009). Therefore,
metaheuristics are applied to the considered problem in this work. The proposed method is
composed of two main steps: i) the design, in a data-driven fashion, of a controller using the
VRFT approach, if a previous controller is not already existent; and ii) considering the controller
obtained at the previous step as initial solution and using the same batch of data, the application
of a metaheuristic optimization algorithm to minimize the cost function considering an H∞

robustness constraint.
Since metaheuristic algorithms may do well on average over a class of problems, but

do worse on average over other class of problems, according to the No Free Lunch (NFL)
theorems (WOLPERT; MACREADY, 1997), more than a single metaheuristic algorithm shall
be considered. Among the different types of metaheuristics (MIRJALILI, 2019; ALATAS; CAN,
2015; WAHAB; NEFTI-MEZIANI; ATYABI, 2015), this work focuses on the application of
swarm intelligence algorithms, since they contain the least number of hyperparameters to be
chosen if compared to the other types (WAHAB; NEFTI-MEZIANI; ATYABI, 2015). Four
swarm intelligence algorithms are considered: Particle Swarm Optimization (PSO) (KENNEDY;
EBERHART, 1995); Artificial Bee Colony (ABC) (KARABOGA; BASTURK, 2007); Grey
Wolf Optimizer (GWO) (MIRJALILI; MIRJALILI; LEWIS, 2014); and the most recent Improved
Grey Wolf Optimizer (I-GWO) (NADIMI-SHAHRAKI; TAGHIAN; MIRJALILI, 2021).

In summary, the general objective of this thesis is the development of a robustness
constrained-method regarding the VRFT cost function, which, considering the non-convex
behavior caused by the inclusion of such constraint, will be minimized using swarm intelligence
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algorithms. Within the main objective, some minor objectives may be stated:

• proposal of a method for estimating system norms depending only on the system’s
impulse response, which should simplify the already existent methods that, mostly,
require more than a single experiment to estimate such norms;

• obtain the H∞ norm of the sensitivity transfer function of a closed-loop system consider-
ing only a single-batch of data;

• application of the proposed method in two real world inspired plants, comparing the used
swarm intelligence algorithms with each other in an statistical form, as well as comparing
the results obtained with the proposed method to the results of the VRFT in terms of
performance and robustness.

This thesis is structured as follows: Chapter 2 briefly reviews the available literature over
the addressed topics; Chapter 3 proposes a method for estimating system norms in a data-driven
fashion with a single batch of data, based on the estimation of impulse response coefficients in
a regularized fashion; Chapter 4 details the Virtual Reference Feedback Tuning control design
technique, including the case for non-minimum phase plants; Chapter 5 comments on the four
chosen swarm intelligence algorithms, detailing their formulation; Chapter 6 explain the details
of the proposed method of this thesis; Chapter 7 illustrate the proposed method through two
real-world inspired examples; finally, Chapter 8 concludes this work and suggests future research.
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2 LITERATURE REVIEW

This chapter addresses a review over the available literature of some relevant points to
this thesis: robust control, data-driven control, system norms estimation, and optimization. In the
next subsection, optimization-based control and robust control are addressed.

2.1 ROBUST AND OPTIMIZATION-BASED CONTROL

Some “classical” controller design techniques present a challenge if the control require-
ments are too rigorous, and/or the process has a too complex model, resulting in a more expensive
procedure in terms of design time. In those cases, optimization techniques could be used to find
the controller parameters (GREEN; LIMEBEER, 1994; APKARIAN; NOLL, 2019).

The Wiener-Hopf-Kalman (WHK) was one of the first control system optimization
method, in the 1950s, when the United States and the Soviet Union were funding research into
guidance and maneuvering of space vehicles (ZHOU; DOYLE, 1998). The WHK assumes that
the plant has a precise linear model, possibly time varying, and that the noises and disturbances
of the system have statistical properties that are known. One of its main applications was in
resource management, minimizing the fuel needed to land a rocket by properly controlling the
system. Once a cost function is settled in a quadratic form, the WHK procedure minimizes
the problem resulting in a unique optimal controller, without requiring any further design
intervention, i.e., without any fine adjusting or trial and error tasks. When the WHK was applied
to industrial problems, a mismatch between its assumptions (e.g., precise model, statistical
properties from disturbances and noise) and industrial applications led to the need of controller
synthesis techniques that could deal with “non-precise” or uncertain models.

Robust control takes into account the uncertainty of a process considering mainly two
types of problems: analysis, which determines if the controlled signals satisfy the desired
robustness properties; and synthesis, that in fact designs the controller to satisfy such properties
(ZHOU; DOYLE, 1998).

2.1.1 H2 optimal control

A system norm is a single number that contains information regarding gain, energy,
robustness, among other possible physical interpretations, which can be used as a tool for system
analysis and controller design (SKOGESTAD; POSTLETHWAITE, 2005). The H2 optimal
control problem has the objective of finding a rational controller that stabilizes internally a
plant and minimizes the H2 norm of the transfer function from reference to output (ZHOU;
DOYLE, 1998). An example is the Linear Quadratic Regulator (LQR) problem, that has the
objective of finding a control function for a dynamical system expressed in a state-space form,
such that the states of the system are driven to a small neighbourhood of origin (ZHOU; DOYLE,
1998). The optimal solution of the LQR formulation guarantees at least 60◦ phase margin and
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6 dB gain margin with the obtained controller. The limitation of the LQR is the choice of the
weighted system matrices, which requires experience from the designer. In fact, plenty of works
in the literature (DUPONT et al., 2013; LEUNG; TAM; LI, 1991; BHUSHAN; CHATTERJEE;
SHANKAR, 2016) have addressed methods to find the weighting matrices of LQR.

Another example of H2 optimal control design procedure is the Linear Quadratic Gaus-
sian (LQG) control (ÅSTRÖM, 1970; ATHANS, 1971), which assumes the presence of additive
white Gaussian noise in the system, combining the LQR control law with a Kalman filter. For
the case of the LQG, however, the guarantee of at least 60◦ phase margin and 6 dB gain margin
from the LQR is not maintained (DOYLE, 1978) and is dependent on the parameters (weight-
ing matrices) choice. Later, a systematic approach, called Loop-Transfer-Recovery (LTR), to
recover robustness properties for the LQG has been proposed for systems that are stable and
minimum-phase (ATHANS, 1986). The finding of weighting matrices via optimization (REMES
et al., 2021b) is also addressed in the literature regarding the LQG control design.

2.1.2 H∞ optimal control

The optimal H∞ control has the objective of finding all admissible controllers C such
that the H∞ norm of a transfer function is minimized (ZHOU; DOYLE, 1998). Often, the H∞

optimal controller presents greater difficulty to be found than H2 optimal controller (DOYLE
et al., 1989). Therefore, in practice, it is much less expensive in terms of time and resources to
design a suboptimal controller, which should be close to the optimal solution in a norm sense.
The suboptimal H∞ control problem is stated as: given γ > 0, find all admissible controllers C, if

they exist, such that ||T ||∞ < γ (ZHOU; DOYLE, 1998).
The main forms of obtaining an H∞ controller are: through the Youla-Kucera parametriza-

tion method (KUČERA, 2011), which leads to a high order controller; solving the Riccati
differential equations, which require several assumptions that simplifies the problem and also
require that the chosen γ criterion does not have a too low value (GREEN; LIMEBEER, 1994);
or using Linar Matrix Inequalities (LMIs) for solving the H∞ optimal control problem (BOYD et
al., 1994). The main downside of H∞ controller design is that it is numerically and theoretically
complicated, which may translate to more design time and more trials until the desired controller
is obtained (SKOGESTAD; POSTLETHWAITE, 2005). While the “classic” H∞ optimal control
design guarantees robust stability, in order to optimize robust performance, the H∞ loop-shaping
method can be used (SKOGESTAD; POSTLETHWAITE, 2005), but deciding on a desired loop
shape, depending on the problem, might be a difficult task to the designer.

Whilst for H2-based control design, uncertainties in the plant are not taken into account
and a precise modeling is required to achieve high quality results in practice, techniques based
on H∞ optimal control may deal with model uncertainties. Another robust technique that has
been extended to uncertain models is switched control, which is presented in the next subsection.
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2.1.3 Switched control

A more recent control design technique based in optimization is the switched con-
trol, which models the system by modes, obtaining a control law that switches between each
mode as needed, guaranteeing Lyapunov-based stability (TROFINO et al., 2009; COLANERI;
GEROMEL; ASTOLFI, 2008; DEAECTO et al., 2010; EGIDIO; DEAECTO, 2019). Systems,
such as power converters, can be modelled as affine1 switched systems, allowing for the design
of a switching rule that stabilizes the process and guarantee robustness (TROFINO et al., 2011).
Uncertain parameters in the system can be considered in the modeling procedure by defining a
polytope region for such parameter variation (BATTISTELLI; SELVI; TESI, 2017). Switched
control has been also extended to include H∞ optimization (TROFINO et al., 2012) for mini-
mizing the effects of disturbances. The switching laws are designed in an offline fashion and
are applied digitally to the process to be controlled. The main difficulty that can be noted within
switched control is the modeling of the process as a switched system, which can become very
complex depending on the plant’s structure.

In some more complex cases, the obtention of a model is too expensive in terms of time
and too exhausting to the designer. All of the aforementioned control design techniques rely on a
mathematical model of the process to be controlled. Another design approach different from the
aforementioned is data-driven control, which avoids the need of mathematical model of the plant,
presenting itself as a viable solution to the existing gaps related to the modeling phase on the
controller design. In the following, some available data-driven control techniques are presented.

2.2 DATA-DRIVEN CONTROL

The main characteristic of Data-Driven (DD) control design techniques is the fact that a
mathematical model of the process to be controlled is not required. Some of the relevant DD
methods are:

1. Iterative Feedback Tuning (IFT) (HJALMARSSON, 1998);

2. Direct Iterative Tuning (DIT) (KAMMER; BITMEAD; BARTLETT, 2000);

3. Virtual Reference Feedback Tuning (VRFT) (CAMPI; LECCHINI; SAVARESI, 2002);

4. Correlation-based Tuning (CbT) (KARIMI; MIŠKOVIĆ; BONVIN, 2004);

5. Optimal Controller Identification (OCI) (CAMPESTRINI et al., 2017);

6. Virtual Disturbance Feedback Tuning (VDFT) (ECKHARD; CAMPESTRINI; BOEIRA,
2018);

7. Data-driven LQR (DD-LQR) (SILVA et al., 2019),
1 Nonlinear systems that are linear in the input.
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The VRFT, OCI, VDFT, and DD-LQR, apart from the other techniques, have a distin-
guished feature: being one-shot methods, i.e., they require only a single batch of data (single
experiment) to design the controller. The VRFT method is addressed in detail in Chapter 4.

The VDFT (ECKHARD; CAMPESTRINI; BOEIRA, 2018) uses input-output time-
domain data from the process to design a controller based on a previously defined reference
model for disturbances. For the design, a virtual disturbance signal is created, which justifies the
name of the method. The VDFT results in a controller that, when operating in closed-loop with
the process, should mimic the reference model behavior.

Correlation-based Tuning (KARIMI; MIŠKOVIĆ; BONVIN, 2004) decorrelates the
output error between achieved and designed closed-loop system, iteratively tuning the controller
parameters. The correlation equations are solved via stochastic approximation, converging to
a unique solution. Since convergence may be too slow for practical applications, numerical
algorithms are suggested to be used for solving the problem. The estimation of the gradient
error, which is used for decorrelation, must be unbiased to guarantee the convergence of the
algorithm. In order to obtain such estimation, a full-order model of the plant should be identified.
In practice, an approximation of the gradient can be used, but without guarantees of convergence.

The OCI method (CAMPESTRINI et al., 2017) consists in solving a prediction error
identification problem. The controller structure is defined in two parts, a fixed part and an
identifiable part. The designer can consider different designs by the choices done over the
fixed part. This method, besides dealing with controller classes both linear and nonlinear in the
parameters, can provide an unbiased estimation of the controller parameters with less variance
than other solutions, e.g., VRFT, at the cost of increased complexity in the optimization problem.
On the other hand, the data-driven solution for the LQR problem - DD-LQR (SILVA et al.,
2019) - obtains the state feedback gain by estimating a sequence of Markov parameters and an
observability matrix from data, solving a quadratic problem, but it still relies on the good choice
of the weighting matrices by the designer.

Although, such one-shot methods provide an optimal solution for a given performance
criterion, robustness is not explicitly considered on them. Therefore, the next subsection presents
some recent robust approaches for data-driven control.

2.2.1 Robust data-driven control

Some recent data-driven approaches address robustness criterion in the design of the
controller. In the literature, a recent methodology (CHILUKA et al., 2021) proposed the sys-
tematization of the VRFT design considering a robustness constraint. The problem with the
proposed method is that it resembles a trial-and-error solution, requiring several experiments in
order to achieve the desired robustness value, which essentially eliminates the greatest advantage
of the VRFT over other DD control design techniques: being one-shot.

A data-driven approach to robust control regarding H2, H∞, and loop-shaping specifi-
cations has been recently addressed (KARIMI; KAMMER, 2017; NICOLETTI; MARTINO;
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KARIMI, 2019), with convex optimization via LMIs. Such method, although, leads to higher-
order controller solutions and it also relies on an initial solution that seem to have influence on
the final one. Such approach is based on the frequency response of the system, lacking, in the
literature, the development of a similar technique that uses only time-domain data.

Other robust data-driven solutions are done in an online fashion, which has the downside
of requiring higher computational processing and having to measure the input-output data set
at every iteration of the algorithm, e.g., the use of the modified algebraic Riccati equation with
online data-driven learning (NA et al., 2021) or the application of a data-driven Model Predictive
Control technique with robustness guarantees (BERBERICH et al., 2021).

The fact that the aforementioned one-shot data-driven approaches do not address robust-
ness, and the robust data-driven control techniques require several batches of data and/or result
in high order controllers, inspired the definition of the subject of this thesis, where a robustness
constraint is included at the VRFT cost function in order to achieve a robust solution. The VRFT
method is detailed in Chapter 4 and is chosen over OCI, VDFT, and DD-LQR since it has been
more broadly applied to a several classes of problems, in order to attest the feasibility of the
proposed method.

Once presented the overview of some relevant works existent in the literature of data-
driven control and their robust extensions solutions, it is presented in the following section some
fundamental aspects relevant to this thesis.

2.3 PRELIMINARIES: DESCRIPTION OF THE SYSTEM

The system considered in this thesis for the theoretical formulation is a discrete-time,
causal, linear time-invariant, and Single-Input Single-Output (SISO) system G(z), where z is the
forward discrete time-shift operator such that zx(k) = x(k+1), whose output signal y(k) can be
described as

y(k) = G(z)u(k)+ v(k), (1)

where u(k) is the input signal and v(k) is the process noise - stochastic effects that are not
represented by G(z), i.e., that are not captured by the input-output relation between signals u(k)

and y(k).
The closed-loop system taken into account in this thesis regards a controller C(z) - which

name might change depending on the design technique along the text - with the process G(z), as
shown in Figure 1, where r(k) is the reference signal and e(k) is the error signal. Any feedback
gain or sensor is assumed to have insignificant dynamics, therefore it can be considered a constant
gain, and can be included to the process model G(z), making for a unitary feedback gain. The
output of the closed-loop system is given as

y(k) = T (z)r(k)+S(z)v(k), (2)

31



29

where the reference signal r(k) is applied to the transfer function from r(k) to the output y(k),
T (z), with

T (z) =
C(z)G(z)

1+C(z)G(z)
, (3)

and S(z) is the sensitivity transfer function such that

S(z)+T (z) = 1, (4)

thus,
S(z) =

1
1+C(z)G(z)

. (5)

Having the system defined, it is shown in the sequel the estimation of system norms.

Figure 1 – Block diagram of the considered closed-loop system structure for this thesis.

C(z) G(z)
u(k)r(k) +

v(k)

+e(k) + y(k)

−

Source: the author.

2.4 ESTIMATION OF SYSTEM NORMS

The H1, H2, and H∞ system norms are commonly used in robust and optimal control.
Regarding the specific case of the H∞ norm of the sensitivity transfer function (MS), it is
known that it is tied to the gain (GM) and phase margins (PM) of a system (SKOGESTAD;
POSTLETHWAITE, 2005). Considering the open-loop transfer function L(z) = G(z)C(z), the
GM and PM can be, respectively, defined as:

GM =
1

|L(e jΩ180)|
≥ MS

MS −1
, (6)

PM = ∠L(e jΩc)+180◦ ≥ 1
MS

, (7)

where Ω = ωTs is the normalized frequency, Ts is the sampling time, Ω180 is the phase crossover
frequency, i.e., the frequency where the phase value is 180◦, and Ωc is the gain crossover
frequency, i.e., the frequency where the magnitude value crosses 0 dB.

The very common data-driven approach is to estimate the norms with frequency response
data (TACX; OOMEN, 2021), but to obtain such data set usually requires to execute several ex-
periments. Iterative methods as Power Iterations and Weighted Thompson Sampling (MÜLLER;
ROJAS, 2020) are also presented as a solution for the estimation of system norms at the expense
of high computational cost.
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Another way of estimating system norms relies in the estimation with the Toeplitz matrix
of the system’s Markov parameters (impulse response) (OOMEN et al., 2014). Recently, a similar
approach to the estimation of the H∞ norm with a different computational approach was used
(SILVA; BAZANELLA; CAMPESTRINI, 2020). The method can be applied to both SISO or
MIMO systems. This work inspires itself in such method and proposes the estimation of system
norms directly via impulse response for SISO systems, since it can be estimated in a regularized
fashion as presented in the literature (CHEN; OHLSSON; LJUNG, 2012) with the empirical
Bayes method (CARLIN; LOUIS, 1997), as shown in Chapter 3, which counters the increased
variance problem of the impulse response estimation (CHEN; OHLSSON; LJUNG, 2012).

With the estimation of system norms in a pure data-driven fashion, the inclusion of the
H∞ system norm constraint at the VRFT cost function can be done. Such inclusion results in a
non-convex cost function, which can be minimized with optimization techniques. For that reason,
the next section addresses optimization problems and algorithms.

2.5 OPTIMIZATION

Complex decision problems can be approached by focusing on a single objective designed
to quantify performance and measure the quality of the decision, which can be minimized or
maximized, depending on the formulation, subject to constraints (LUENBERGER; YE, 2015).

Optimization can be divided in two main parts: i) Linear programming - a problem that is
characterized by linear functions of the unknowns. The objective is linear and the constraints are
linear equalities or linear inequalities in the unknowns; and ii) Nonlinear programming - divided
in unconstrained and constrained problems. The general mathematical programming problem
can be written as (LUENBERGER; YE, 2015)

minimize
x

f (x)

subject to x ∈ Π,
(8)

where x is a n-dimensional vector of unknowns, f is a real valued function of x, and Π is a subset
of n-dimensional space. The found solution does not ever reach the exact solution point, but
converges towards it. The operation is usually terminated if the reached point of convergence is
sufficiently close to the solution point or when a maximum number of iterations is reached. The
convergence points can be local or global. Local solution points (local minimum) occur when
the algorithm converges to a point that is not sufficiently close to the solution point and would
take an exorbitant amount of time to reach the exact global solution. The global solution point
(global minimum) is considered to be sufficiently close to the problem’s solution.

Notice that in this work, the term convergence is considered to be when the difference
of two subsequent evaluations of the cost function is lower than a certain value δ << 1, e.g.,
δ = 1×10−9.

Constrained problems can be approximated to unconstrained problems, commonly done
via penalty or barrier methods (LUENBERGER; YE, 2015). Regarding penalty methods, the

33



31

constrained problem (8) can be changed by adding a penalty term to the main cost function, as

minimize
x

f (x)+ cH(x), (9)

where c is a positive constant and H is a function that satisfies: i) H is continuous; ii) H(x)≥ 0 ∀x;
and iii) H(x) = 0 if and only if x ∈ Π. Considering a large c, the minimum point of the problem
(9) will be in a region where H is small. Ideally, for c → ∞ the solution point of the unconstrained
problem with a penalty converges to a solution of the constrained problem.

Another form of adapting a constrained cost function to an unconstrained problem are
the barrier methods (LUENBERGER; YE, 2015). A barrier function B is defined in the interior
of Π in (8), such that: i) B is continuous; ii) B(x) ≥ 0; and iii) B(x)→ 0 as x approaches the
boundary of Π. The barrier function is included into the cost function as

minimize
x

f (x)+
1
c

B(x)

subject to x ∈ interior of B.
(10)

Notice that, in (10), a constraint still exists but it is simpler to be implemented than the “fully”
constrained problem (8).

Since some of the techniques applied in this work rely on linear or bilinear optimization
problems, the next subsection presents the least squares criterion, which is an optimization
technique that usually fits such type of problems.

2.5.1 Least squares criterion

For linearized problems, such as the estimation of the impulse response of a system
around a specific operation point, an optimization criterion with analytic solution, named least
squares, can be used to identify unknown parameters according to input-output data. The standard
solution is based on a linear regression that considers the output of the process as

y(k) = ψ(k)θ + v(k). (11)

Considering YN = [y(M+1) y(M+2) ... y(N)]′ the N output regressors, ΨN = [ψ(M+1) ψ(M+

2) ... ψ(N)], with ψ(k) = [u(k − 1) u(k − 2) ... u(k −M)]′, the N input regressors, θ the M

parameters to be identified, and ΛN the N noise regressors ΛN = [v(k+1) v(k+2) ... v(N)]′, with
Gaussian distribution and variance σ2, i.e., v(k)∼N (0,σ2), expression (11) can be rewritten in
a more compact form by stacking N −M+1 samples,

YN = Ψ
′
Nθ +ΛN . (12)

Expression (12) represents the stacked signals specifically for the problem of impulse response
estimation with M coefficients (CHEN; OHLSSON; LJUNG, 2012) which is of interest for this
thesis. To generalize the least squares criterion, YN , ΦN , and ΛN can be defined with M = 0. Also,
note that the term regressors comes from the fact that YN , ΨN , and ΛN are linear regressions,
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alluding to the fact that they are calculated or described “backwards” to the vectors that are used
to compose them (LJUNG, 1999).

For notational simplicity, ΛN is considered to be null in the least squares formulation
(LJUNG, 1999). The prediction error is given as

ε = YN −Ψ
′
Nθ . (13)

The objective of the regression is defined to reduce the prediction error in a 2-norm sense,
problem which can be written in the form of a cost function:

minimize
θ

||YN −Ψ
′
Nθ ||22. (14)

The minimum argument of (14) represents the least squares solution of the problem, i.e., the
solution that minimizes the squared prediction error. From (12), considering ΛN null, it is given
that

YN = Ψ
′
Nθ . (15)

Since Ψ′
N is not a square matrix, it cannot be inverted. Although, multiplying both sides of (15)

by ΨN :
ΨNYN = ΨNΨ

′
Nθ , (16)

now where ΨNΨ′
N is a square matrix and can be inverted. Isolating θ in (16), the solution is

obtained as
θ̂ = [ĝ1 ĝ1 ... ĝM]′ = (ΨNΨ

′
N)

−1
ΨNYN , (17)

where (ΨNΨ′
N)

−1ΨN is known as the pseudo-inverse of ΨN .
The least squares can be used in some of the approached problems of this thesis, the

inclusion of an H∞ constraint at the VRFT optimization problem (as Chapter 6 details) results
in a non-convex problem, with an unknown structure since the H∞ norm is identified during
optimization. Metaheuristic optimization is known to perform well in such situations (TALBI,
2009), thus, the following subsection presents a brief review over metaheuristics.

2.5.2 Metaheuristics

While classical methods try to find an exact solution to a problem, metaheuristics (or
heuristics, in general) find an approximate solution, which is very useful to more complex
optimization problems or unknown structures (black boxes) (TALBI, 2009). The approximate
solution found by a metaheuristic algorithm should be as close as possible to the global minimum
(LUKE, 2013), but there is no guarantee of convergence to the optimal global minimum (TALBI,
2009). Metaheuristics are seen as computational intelligence algorithms for optimization, and
therefore, are considered to be a branch of artificial intelligence (DU; SWAMY, 2016).

In general, the most commonly used metaheuristics can be classified into three main
classes: evolutionary algorithms; physics-based algorithms; and swarm intelligence algorithms
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(MIRJALILI; MIRJALILI; LEWIS, 2014). Since literature over the topic is very wide and not
necessarily have a convention over the classification of metaheuristic algorithms, several ways of
defining and, thus, classifying an algorithm are presented below, according to (TALBI, 2009):

• nature inspired versus nonnature inspired: evolution, artificial immune systems,
colonies of bees, ants, social sciences over animal species, and physics are took as
inspiration for many of the nature inspired algorithms, whilst some algorithms (e.g.,
Greedy Randomized Adaptive Random Procedures - GRARP (FEO; RESENDE, 1995))
are nonnature based.

• memory usage versus memoryless methods: whilst some algorithms do not extract
information dynamically during the search, others use a memory that contains informa-
tion extracted during optimization, e.g., Tabu search (GLOVER; LAGUNA, 1998) and
GRARP;

• deterministic versus stochastic: some metaheuristics solve problems by making de-
terministic decisions (e.g., Tabu search), whilst others contain some random rules (e.g.,
Simulated Annealing (KIRKPATRICK; GELATT; VECCHI, 1983), evolutionary algo-
rithms, swarm intelligence algorithms);

• population-based search versus single-solution based search: single-solution algo-
rithms (e.g., Simulated Annealing) manipulate and transform a single solution over the
whole optimization procedure and are exploitation oriented - the search is intensified in
local regions, i.e., the solution is focused on a single part of the search space at a time.
Population-based algorithms, on the other hand, evolve a whole population of solutions
and are exploration oriented, allowing for better diversification in the search space, i.e.,
there are several search agents (which represent solutions) spread throughout the search
space;

• iterative versus greedy: in iterative algorithms, an initial complete solution is used as
initialization and it is modified over the optimization procedure. For greedy algorithms,
the initial solution is null.

Focusing on swarm intelligence algorithms, they are represented by a class of optimization
algorithms of collective intelligence that mimics social behavior of animals, i.e., collective
behavior of decentralized agents, resulting in local interactions of individual components as
well as interactions with their environment and with the whole swarm (DU; SWAMY, 2016).
This work addresses the use of such algorithms over other metaheuristics for the proposed
problem for the following reasons (MIRJALILI; MIRJALILI; LEWIS, 2014): i) they preserve
information about the search space over iterations, while evolutionary algorithms discard the
information at each generation; ii) more often this type of algorithm uses memory to record the
best found solution so far; iii) usually there are fewer parameters to adjust when compared to
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other metaheuristics; iv) there are less operators when compared to evolutionary approaches
(crossover, mutation, elitism, etc); and v) simpler implementation if compared to evolutionary
algorithms and some physics based metaheuristics. Some of the most relevant swarm intelligence
algorithms from 1995 (PSO) to 2021 (I-GWO) are listed below:

• Particle Swarm Optimization (PSO) (KENNEDY; EBERHART, 1995);

• Ant Colony Optimization (ACO) (DORIGO; BIRATTARI; STUTZLE, 2006);

• Artificial Bee Colony (ABC) (KARABOGA; BASTURK, 2007);

• Firefly Algorithm (FA) (YANG, 2010);

• Krill Herd (KH) (GANDOMI; ALAVI, 2012);

• Grey Wolf Optimizer (GWO) (MIRJALILI; MIRJALILI; LEWIS, 2014);

• Whale Optimization Algorithm (WOA) (MIRJALILI; LEWIS, 2016);

• Improved Grey Wolf Optimizer (I-GWO) (NADIMI-SHAHRAKI; TAGHIAN; MIR-
JALILI, 2021).

This work uses four of the listed swarm intelligence algorithms in order to minimize the
proposed problem and compare the algorithms to each other, since the No Free Lunch (NFL)
theorems (WOLPERT; MACREADY, 1997) states that if an algorithm does well on average for a
class of problems, it might not for other class of problems. Therefore more than one metaheuristic
optimization algorithm should be tested. Two of the algorithms were chosen because they are the
most famous and commonly used in metaheuristic optimization, being PSO and ABC. The other
two were chosen as more “modern” algorithms, the first being the GWO, which has presented
very interesting results in the literature and has the least number of hyperparameters2 over all
cited algorithms. The I-GWO was the last chosen algorithm and represents an improvement
over the GWO regarding the lack of population diversity, imbalance between exploitation and
exploration, and premature convergence. Although there are plenty of improved versions of the
GWO, the I-GWO still maintains the least number of parameters characteristic of the GWO,
as well as it is a result of analyzing all other improved algorithms and composing a new one
(NADIMI-SHAHRAKI; TAGHIAN; MIRJALILI, 2021). The chosen algorithms are described
in details in Chapter 5.

2.6 FINAL CONSIDERATIONS

Control design based in optimization is usually required to reduce design time for more
complex plants or to reach more rigorous control requirements. Historically, one of the first
2 A parameter whose value is used to control the learning/optimization process and is usually chosen by the user.
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optimization control design to be used was the Wiener-Hopf-Kalman for space craft applications.
When this technique was applied in industry, some robustness problems appeared due to the poor
modeling of the systems, requiring the development of robust techniques. The H2 optimal control
is generally treated through the LQR and the LQG methods, and its primary focus is performance.
On the other hand, the H∞ optimal control is a class of design methods to obtain a controller
that satisfies a γ restriction of H∞ norm, which leads to higher robustness, with the downside
of more complex formulations resulting in little direct influence of the user over the design as
well as still maintaining the need of a mathematical model to be obtained. Switching control is
another robust approach based in optimization that requires the modeling of the system, but in a
switched perspective, which can become very complex depending on the process’ structure.

Data-driven control design methods do not require a model. Some methods like the
Iterative Feedback Tuning and the Correlation-based Tuning require several experiments for
obtaining a final solution, while the VRFT, OCI, VDFT, and DD-LQR are one-shot techniques
that minimizes the H2 norm of defined optimization criterion. An attempt to include robustness
criterion on the VRFT design (CHILUKA et al., 2021) resulted in a method that relies on
several experiments, losing one of the most attractive VRFT feature. A data-driven approach to
robust control via LMIs has been recently proposed (KARIMI; KAMMER, 2017; NICOLETTI;
MARTINO; KARIMI, 2019), but results in a higher-order controller and the final solution
is influenced by the initial considered solution. The inclusion of a robustness constraint in a
one-shot technique, holding such characteristic, seems to be a gap in the literature. Such addition
would result in a non-convex optimization problem, which can be solved via metaheuristic
optimization, that are suitable for this type of problem.

The techniques for estimation of system norms available in the literature rely on methods
that require several experiments or that need to estimate the whole state-space of an unknown
system. A technique relying solely on the identification of the impulse response of the system,
avoiding state-space identification, could simplify the problem and the formulation.

38



36

3 ESTIMATION OF SYSTEM NORMS

Throughout this chapter, a form to estimate system norms via impulse response is devel-
oped in order to allow the inclusion of a robustness constraint in the Virtual Reference Feedback
Tuning (VRFT) cost function, since the H∞ norm of the sensitivity transfer function is a direct
measure of robustness (SKOGESTAD; POSTLETHWAITE, 2005). Firstly, the non-parametric
estimation of impulse response coefficients is addressed. In the sequence, an approximated
estimation of system norms, considering the estimated system response, is presented.

3.1 NON-PARAMETRIC ESTIMATION OF IMPULSE RESPONSE COEFFICIENTS

The output of the system G(z) can be described by

y(k) = G(z)u(k)+ v(k), (18)

where u(k) is the input signal and v(k) is an additive noise term. The system G(z) can be
expressed considering its Impulse Response (IR) g(i), i ∈ N, as

G(z) =
∞

∑
i=1

g(i)z−i. (19)

Expression (19) can be truncated to a finite number, resulting in a Finite Impulse Response (FIR)
model, where g(i) can be estimated using least squares (CHEN; OHLSSON; LJUNG, 2012).
Such truncation represents an approximation of the system G(z),

G(z)≈
M

∑
i=1

g(i)z−i, (20)

which is sufficiently representative if the number of terms M is enough to characterize the
impulse response. Considering a stable system, limk→∞ g(k) = 0, which means that the IR tends
to zero when its number of terms tends to infinite.

When using the standard least squares algorithm, as presented in Subsection 2.5.1, for
the estimation of impulse response, the estimated coefficients θ̂ have their variance linearly
increased with the order M, i.e., the higher the M value, the poorer will be the estimation at the
final terms of the IR because of the increasing variance (CHEN; OHLSSON; LJUNG, 2012). In
order to estimate the impulse response more accurately, the issue of increased variance should be
countered by including a compensation term in the least squares problem (14), that seeks for
a solution that balances both the error and the norm of the parameter vector. In practice, this
tends to reduce the influence of unimportant terms, by weighting the solution in the cost function,
i.e., regularizing the solution, which can be represented in the form of an optimization problem
similar to (14), given by

min
θ

N

∑
k=M+1

(y(k)−ψ
′(k)θ)2 +θ

′Xθ , (21)
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where θ ′Xθ is the regularization term and X is the regularization matrix. In (21), the solution
to be found should be one that minimizes the Mean Square Error (MSE) of the estimates (first
term) as well as the two-norm of the parameter vector (regularization term), which should result
in a sparser solution than for the standard least squares solution (17). A sparser solution is one
that has less non-zero values (or more zero values) than the original solution.

The solution for (21) can be obtained through a Bayesian perspective (CHEN; OHLSSON;
LJUNG, 2012), which means to consider the parameter to be estimated a random variable, seeking
some prior distribution of it given the observations. In order to do so, a Gaussian distribution for
the parameter vector is considered as follows:

θ ∼N (0,PM), (22)

with zero mean and covariance matrix PM, where θ are the parameters to be estimated. Recalling
(12) (Chapter 2), it is also known that the output regressors are defined as

YN = Ψ
′
Nθ +ΛN , (23)

where ΨN are input regressors, ΨN = [ψ(k + 1) ψ(k + 2) ... ψ(N)], and ΛN are the noise
regressors composed of ΛN = [v(k+ 1) v(k+ 1) ... v(N)] where v(k) ∼ N (0,σ2). In order to
regularize the estimation, since the variable to be estimated is considered a random variable in
the Bayesian approach, YN and θ are taken as jointly Gaussian random variables, i.e., variables
in the same sample space with a joint characteristic function and a Gaussian joint density. By
considering that, a Gaussian probability density function of the two variables can be defined
(CHEN; OHLSSON; LJUNG, 2012) as[

θ

YN

]
∼N

([
0
0

]
,

[
PM PMΨN

Ψ′
N Ψ′

NPMΨN +σ2IN−n

])
. (24)

Nevertheless, an a posteriori distribution of θ given YN can be obtained from (24) as
(CHEN; OHLSSON; LJUNG, 2012)

θ |YN ∼N (θ̂ apost
N ,Papost

N ), (25)

which represents the probability density function of θ given all the information contained in YN ,
where θ̂

apost
N is given as (CHEN; OHLSSON; LJUNG, 2012)

θ̂
apost
N = ((σ2(ΨNΨ

′
N)

−1)−1 +P−1
M )−1(σ2(ΨNΨ

′
N)

−1)−1
θ̂

LS
N , (26)

and the covariance matrix Papost
N is (CHEN; OHLSSON; LJUNG, 2012)

Papost
N = ((σ2(ΨNΨ

′
N)

−1)−1 +P−1
M )−1, (27)

in which the superscript apost indicates a posteriori, the ‘hat’ marker stands for estimated values,
and θ̂ LS

N is the non-regularized case solution, obtained via (17). When X = σ2P−1
M in (21), θ̂

apost
N

is equal to the regularized estimate (CHEN; OHLSSON; LJUNG, 2012).
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The covariance matrix PM can be defined according to some prior covariance matrices
with predefined structure, also known as kernels. Three kernels are chosen to be used - Diago-
nal/Correlated (DC), Diagonal (DI), and Tuned Correlated (TC) - since they are used in the base
literature for this work (CHEN; OHLSSON; LJUNG, 2012), given respectively by:

PM =



PDC(k, j) = cι |k− j|λ (k+ j)/2;

PDI(k, j) =

cλ k, i f k = j;

0, otherwise;

PTC(k, j) = c min(λ j,λ k),

(28)

which hyperparameters are defined in a vector form, for the DC kernel α = [c λ ι σ ], and for DI
and TC kernels α = [c λ σ ]. From (24), isolating YN ,

YN ∼N (0,σ2IN−M +Ψ
′
NPM(α)ΨN). (29)

The estimation of α in expression (29) can be done through the maximum likelihood approach
(CARLIN; LOUIS, 1997), as

α̂ = min
α

Y ′
NΣ(α)−1YN + logdetΣ(α), (30)

where
Σ(α) = σ

2IN−M +ΨNPM(α)Ψ′
N . (31)

This method for estimating the hyperparameters in the prior distribution is defined by (CARLIN;
LOUIS, 1997) as the empirical Bayes method, which has already been used, e.g., for control
design (BOEIRA; ECKHARD, 2018). The estimation in (30) can be done by using available
classical optimization methods, available in some libraries, e.g., for Python - the Scipy Optimize
library (COMMUNITY, 2020). The impulse response estimation method through empirical
Bayes method is summarized in a flowchart diagram in Figure 2 . During the development of
this thesis, the IR estimation was implemented as a package in Python, generating a publication
(FIORIO; REMES; NOVAES, 2021), whose results are detailed in Appendix A.

The next section presents the estimation of system norms relying solely on the identified
impulse response of the system.
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Figure 2 – Flowchart diagram summarizing the impulse response estimation method through
empirical Bayes method.
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M
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Regularized least squares algorithm
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User entries                                                    Approach Output

Source: the author.

3.2 ESTIMATION OF SYSTEM NORMS VIA IMPULSE RESPONSE

The signal norms Lp and L∞ are defined as (SKOGESTAD; POSTLETHWAITE, 2005,
A.5):

Lp : ||x(k)||p =

(
∞

∑
k=0

|x(k)|p
)1/p

, (32a)

L∞ : ||x(k)||∞ = max |x(k)|, (32b)

where x(k) is any time domain signal and p ≥ 1, typically 1 or 2. The Lp norm, with p = 2, can
be used to represent energy in a signal, for example, whilst the L∞ is the peak value of the signal
in time. The notation L is due to the fact that, for the continuous case of (32a), the integrand
should be Lebesgue-integrable for the integral to exist (TOIVONEN, 2010).

On the other hand, for system norms, consider the system G(z), with its output y(k)

described by the convolution between an input signal u(k) and the impulse response coefficients
g(k),

G : y(k) = g(k)∗u(k) =
∞

∑
n=0

g(k−n)u(M). (33)

The main used norms are H1, H2, and H∞, and are defined as (SKOGESTAD; POSTLETH-
WAITE, 2005, A.5):

H1 : ||G||1 =
∞

∑
k=0

|g(k)|= max
u(k)̸=0

||g(k)∗u(k)||∞
||u(k)||∞

, (34a)

H2 : ||G||2 =

√
∞

∑
k=0

|g(k)|2 = ||g(k)||2, (34b)
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H∞ : ||G||∞ = max
u(k)̸=0

||g(k)∗u(k)||2
||u(k)||2

. (34c)

In this case, the notation used is H instead of L and refers to the fact that the function spaces have
finite Lp norms on the imaginary axis and are bounded and analytic functions in the right-half
plane, i.e., no poles outside the unit circle for the discrete-time case, being called Hardy spaces
(TOIVONEN, 2010).

Expressions (32) and (34) shall be modified to allow the use of limited data (i.e., a practi-
cal case), which can be done by considering that the system G is stable, and thus limk→∞ g(k) = 0.
Therefore, the convolution in (33) can be truncated to M terms, assuming that the IR terms with
an order greater than M are negligible (sufficiently close to zero), resulting in

G : y(k) =
∞

∑
n=0

g(k−n)u(M)≈
M

∑
n=0

g(k−n)u(M)︸ ︷︷ ︸
|g(M+1)|<ε , with ε→0+

. (35)

For the norms H1 and H2, the truncated convolution (35) can be considered, approximat-
ing the expressions (34a) and (34b), respectively, to

||G||1 ≈
M

∑
k=0

|g(k)|, (36)

||G||2 ≈

√√√√ M

∑
k=0

|g(k)|2, (37)

which allows for the obtention of the norms H1 and H2 with a limited amount of data (an IR
g(k) with only M terms).

On the other hand, the H∞ norm stands for the maximum gain relation considering all
sets of possible input signals in a system (SKOGESTAD; POSTLETHWAITE, 2005). Therefore,
such norm cannot be practically obtained using expression (34c), since it is required to consider
all possible input signals in its evaluation. As an alternative strategy, a matrix relation to g(k)

can be obtained in order to allow the use of induced norm properties. Expression (35) can be
expanded to M terms as 

y(0) = g(0)u(0)

y(1) = g(1)u(0)+g(0)u(1)
...

y(M) = g(M)u(0)+ · · ·+g(0)u(M),

(38)
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which can be represented in a matrix form,
y(0)
y(1)
· · ·

y(M)


︸ ︷︷ ︸

YM

=


g(0) 0 · · · 0
g(1) g(0) · · · 0

...
... . . . ...

g(M) g(M−1) · · · g(0)


︸ ︷︷ ︸

GM


u(0)
u(1)
· · ·

u(M)


︸ ︷︷ ︸

UM

, (39)

where the multiplication between GM and the input vector UM results in the output vector YM,
where matrix GM represents the system’s IR in the form of a Toeplitz matrix. If the order M is
sufficiently high, it can be said that matrix GM sufficiently characterizes the impulse response
g(k) and, therefore, system G.

An interesting property of matrices is the induced norm, which have a close relation-
ship to signal amplification in systems (SKOGESTAD; POSTLETHWAITE, 2005). From the
representation presented in (39), it is clear that

YM = GMUM. (40)

The “amplification” or “gain” of matrix GM is, then, given by the ratio ||YM||/||UM||. Therefore,
the maximum gain considering all possible inputs, which is of particular interest, can be described
as

||GM||ip = max
UM ̸=0

||GMUM||p
||UM||p

, (41)

where the subscript i stands for induced. The p-norm of a matrix A, with elements ai j according
to row i and column j, can be calculated as follows (SKOGESTAD; POSTLETHWAITE, 2005,
A.5):

||A||p =

(
∑
i, j

|ai j|p
)1/p

. (42)

Figure 3 – Block diagram representation of (39).

GM
UM YM

Source: adapted from (SKOGESTAD; POSTLETHWAITE, 2005).

Since GM characterizes the system G, the induced norm can be used as an equivalent
expression for (34c), since both represent the maximum gain considering all sets of input signals.
Thus, relating (34c) to (41) with p = 2, results in

||G||∞ = max
u(k)̸=0

||g(k)∗u(k)||2
||u(k)||2

≈ max
UM ̸=0

||GMUM||2
||UM||2

= ||GM||i2. (43)

The induced-2 norm of a matrix, on the other hand, is also equivalent to the largest singular value
of a matrix, which is obtained as

||GM||i2 = σ̄(GM) =
√

λmax (G′
MGM), (44)
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where σ̄ stands for largest singular value and λmax is the largest eigenvalue of GM. Finally, with
(43) and (44), the H∞ norm of G can be approximated by

||G||∞ ≈ σ̄(GM) =
√

λmax (G′
MGM), (45)

which does not depend on a particular set of input signals, allowing for the H∞ norm to be
obtained directly from matrix GM.

From the reasoning aforementioned, it is observed that the system norms can be calculated
once the IR coefficients are estimated. Such coefficients, in turn, can be estimated with limited
data in a regularized form with the empirical Bayes method, as presented in Section 3.1. In
summary, the system norms can be obtained in a data-driven fashion as illustrated in Figure 4.

Figure 4 – Flowchart diagram summarizing the proposed norm estimation method based on
impulse response.
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Source: the author.

3.2.1 Estimating the norms of the sensitivity transfer function

In order to estimate the H∞ norm of the sensitivity transfer function S(z), since the
proposed system norm estimation method is based on the estimation of the impulse response of
the system, firstly, an expression for the input and output signals of S(z) is needed to estimate its
IR.

From the closed-loop system considered in this thesis, detailed in Subsection 2.3, consider
an experiment such that

T (z) =
C(z)G(z)

1+C(z)G(z)
, (46)
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where S(z) is the sensitivity transfer function and relates to T (z) as

S(z)+T (z) = 1, (47)

the system’s output can be described by

y(k) = T (z)r(k)+S(z)v(k). (48)

The output signal can be rewritten considering the relation (47), then, as

y(k) = [1−S(z)]r(k)+S(z)v(k) = r(k)+S(z)[v(k)− r(k)]. (49)

Consequently,
y(k)− r(k) = S(z)[v(k)− r(k)], (50)

resulting in
r(k)− y(k) =C−1(z)u(k) = S(z)[r(k)− v(k)]. (51)

Since the noise signal v(k) does not appear in C−1(z)u(k) and it is usually too small to be
measured separately, it is not considered in the data set used for estimation. Therefore, with
the input-output set of data {r(k),C−1(z)u(k),k = 1...N}, the estimation of the IR of S(z) can
be done as commented in Section 3.1 and, thus, the ||S(z)||∞ can be estimated according to the
method proposed in Section 3.2. The H1 and H2 norms of S(z) can be obtained via expressions
(34a) and (34b), respectively. The H∞ norm of S(z), on the other hand, can be estimated by the
approximation ||S(z)||∞ ≈ ||SM||i2, with M sufficiently large, by forming a Toeplitz matrix SM as
suggested in (39).

3.3 CASE STUDY

In order to evaluate the proposed method for estimating system norms via impulse
response, a case study with the objective of obtaining the H1, H2, and H∞ norms of five different
systems is proposed. The norms are obtained using a Pseudo-Random Binary Sequence (PRBS)
as excitation signal for the reference, since it is a persistent signal of high order (LJUNG, 1999),
with N = 2000 samples. The IR is estimated by the method exposed in Section 3.1, with length
M = 100 set arbitrarily, in a regularized fashion using the Tuned-Correlated kernel - as well as
for all the examples provided in this case study - since it has less computational cost than the DC
kernel, and is still precise enough to provide sufficiently accurate results (CHEN; OHLSSON;
LJUNG, 2012). For each system in simulation, additive white Gaussian noise v(k) with zero
mean and a Signal-to-Noise ratio (SNR) of 10 dB was included at the process output and fed
back to the system as shown in Figure 1.

The considered systems are presented in Table 1 and have structures that are commonly
found in engineering problems (NISE, 2000). Tables 2, 3, and 4 show, respectively, the estimated
H1, H2, and H∞ norms, with its comparison to the real value (obtained by model), altogether
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Table 1 – System’s transfer functions G(z) and controllers C(z) used as examples.

System G(z) C(z)
1 0.5

(z−0.9)
0.3797(z−0.9)

(z−1)

2 −0.1(z−0.5)
(z−0.9)(z−0.8)

−1.1600(z−0.9719)
(z−1)

3 −0.05(z−0.6)
(z2−1.8z+0.82)

−3.7144(z−0.9351)(z−0.4210)
z(z−1)

4 −0.05(z−1.4)
(z−0.9)(z−0.8)

4.7942(z−0.9)(z−0.8)
z(z−1)

5 3.605(z−0.55)(z2−1.62z+0.6586)
(z2−1.84z+0.8564)(z2−1.26z+0.4069)

0.0519(z−0.8977)
(z−1)

Source: the author.

Table 2 – Each system’s H1 norm of S(z) calculated by model (Real), estimated via data (Data),
and its percent error.

System Real Data Error (%)
1 2.0000 2.0076 0.3825
2 2.0544 1.9466 5.2485
3 2.1656 2.1496 0.7358
4 2.4794 2.4778 0.0649
5 2.0307 1.9970 1.6578

Source: the author.

Table 3 – Each system’s H2 norm of S(z) calculated by model (Real), estimated via data (Data),
and its percent error.

System Real Data Error (%)
1 1.0511 1.0520 0.0784
2 1.0441 1.0428 0.1293
3 1.0542 1.0509 0.3166
4 1.0811 1.0846 0.3175
5 1.0523 1.0543 0.1889

Source: the author.

Table 4 – Each system’s H∞ norm of S(z) calculated by model (Real), estimated via data (Data),
and its percent error.

System Real Data Error (%)
1 1.1049 1.1210 1.4635
2 1.1619 1.1521 0.8408
3 1.1272 1.1331 0.5186
4 1.5348 1.5375 0.1767
5 1.1006 1.1224 1.9781

Source: the author.

with the absolute value of the percent error between both values. The low percent errors found
suggest good performance for estimating system norms with the proposed method.

In order to verify the influence of the noise amplitude to the norm estimation, the H1,
H2, and H∞ norms of the sensitivity transfer function are estimated for System 2 (Table 1), since
it the second-order structure with minimum-phase zero is very common in control engineering
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problems (NISE, 2000), with the SNR value varying from 0.1 to 50 dB, with a step of 0.1 dB.
The result is presented in Figure 5. The reference signal considered for estimation is a PRBS,
with the same characteristics as aforementioned.

To evaluate the quality of the estimation, the Mean Percent Error (MPE), in respect to all
estimations in Figure 5, between the estimated and the real norm is taken into account, obtained
as the average of the percent errors for each SNR value. For the estimation of the H1 norm,
the obtained MPE is of 2.4287 %. For the H2 norm, an MPE of 0.0903 % is obtained. At last,
the H∞ norm estimation resulted in 0.3729 % of MPE. Visually, Figure 5 shows a less precise
estimation for lower values of SNR, as expected, since it represents higher noise amplitude in
relation to the signal amplitude. The H1 estimation is less precise than H2 and H∞, which may
be a result of the influence that each IR term has in expression (36), since every term is summed
to the norm value.

Figure 5 – Estimated H1, H2 and H∞ norms of S(z), for System 2, with its real values in dashed
lines, for a wide SNR range.

Source: the author.

The proposed norm estimation procedure is compared to a state-of-the-art approach from
the literature (SILVA; BAZANELLA; CAMPESTRINI, 2020), which is inspired in state-space
subspace system identification theory, for estimating the H∞ norm of the sensitivity function
of System 1, system chosen for its simplicity, since 100 runs are executed for each of the 500
considered values of SNR, demanding some substantial time to be executed. The number of
estimates for the IR is chosen arbitrarily as M = 100, and the variation of SNR is considered
as aforementioned. At each SNR value, a Monte Carlo experiment with 100 runs was executed,
changing the noise realization at each run. Figure 6 shows the mean estimated norm for each
SNR value with the proposed and the literature method, as well as a boxplot with the SNR
statistics. It can be seen that the proposed method achieves a value closer to the real one, which
is more perceptible for lower SNR values. The MPE for the proposed method was of 0.6351 %,
whilst 1.2187 % for the literature method, which represents a reduction of 47.8871 % by the use
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of the proposed approach. Such reduction is possibly influenced by the use of regularization in
the IR estimation, which is not considered for the Markov parameter’s estimation in the literature.

Figure 6 – Mean value of 100 Monte Carlo runs for the proposed and a literature method
(SILVA; BAZANELLA; CAMPESTRINI, 2020), for estimating ||S(z)||∞ of System

1, as well as its box plot representation.
M

PE
 (

%
)

Source: the author.

3.4 FINAL CONSIDERATIONS

In this chapter, the regularized estimation of impulse response was addressed and a
method for estimating system norms based on the impulse response using only a single batch
of data was proposed. The results show low values of percent error for all tested cases. In
comparison to a state-of-the-art technique from the literature for estimating the H∞ norm of
a system (SILVA; BAZANELLA; CAMPESTRINI, 2020), the proposed method showed a
considerable reduction of the mean percent error of the estimation for a system, which was
observed in a Monte Carlo experiment throughout a wide range of SNR values. Some results of
this chapter are published in the literature (FIORIO; REMES; NOVAES, 2021).
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4 DATA-DRIVEN CONTROLLER DESIGN

In this chapter, data-driven controller design is addressed through the Virtual Reference
Feedback Tuning (VRFT) method (CAMPI; LECCHINI; SAVARESI, 2002; CAMPESTRINI et
al., 2011; BAZANELLA; CAMPESTRINI; ECKHARD, 2012), which is used by the method
proposed in this thesis, and bases itself in the Model Reference Control (MRC), also explained
here.

The closed-loop block diagram considered in this chapter, for reference tracking, is
presented in Figure 7, where C(z,ρ) is the controller to be designed, r(k) is the reference signal,
and e(k) is the error signal. The noise signal v(k) is neglected in the following expressions and
from Figure 7 for simplicity. The output signal can be expressed in terms of the closed-loop
transfer function from the reference signal r(k) to the output signal y(k) as

y(k) = T (z,ρ)r(k), (52)

where
T (z,ρ) =

C(z,ρ)G(z)
1+C(z,ρ)G(z)

. (53)

Figure 7 – Block diagram of the closed-loop system for reference tracking.

C(z,ρ) G(z)
u(k)r(k) + e(k) y(k)

−

Source: the author.

The closed-loop control law, from Figure 7, is given as

u(k) =C(z,ρ)(r(k)− y(k)). (54)

The controller is linearly parameterized as

C(z,ρ) = ρ
′C̄(z), (55)

in which ρ ∈Rp represent the parameters of the controller, e.g., for PID controller ρ = [kp ki kd]
′,

where kp, ki, and kd are, respectively, the proportional, integral, and derivative controller gains.
C̄(z) is a vector of transfer functions, e.g., in the case of the PID controller:

C̄(z) =

 1
z

z−1
z−1

z

 (56)

such that
C(z,kp,ki,kd) = kp + ki

z
z−1

+ kd
z−1

z
. (57)
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The controller C(z,ρ) is said to belong to a controller class C:

C = {C(z,ρ) : ρ ∈ P}, (58)

where P ⊆ Rp represents the set of admissible values for the parameter vector ρ . It is worth to
mention that a necessary condition is that the design problem should present a unique solution,
therefore the chosen controller class should represent the minimal possible number of parameters
(minimal parametrization) (BAZANELLA; CAMPESTRINI; ECKHARD, 2012).

4.1 THE MODEL REFERENCE CONTROL

In the design paradigm of the Model Reference Control (MRC), the two-norm of the
difference between the output signal y(k) and a desired (represented by the subscript d) output
signal yd(k) is considered:

JMR(ρ) = ||y(k)− yd(k)||22, (59)

where the desired output signal is obtained as

yd(k) = Td(z)r(k). (60)

The Td(z) transfer function is defined as the reference model, such that its output, when a
reference signal r(k) is considered, results in the desired output yd(k). The cost function (59)
can be rewritten as

JMR(ρ) = ||(T (z,ρ)−Td(z))r(k)||22, (61)

which has the minimum in zero. The MRC controller design, nevertheless, consists in finding the
controller parameters ρ such that (61) is minimized, i.e., making the closed-loop T (z,ρ) as close
as possible to the desired model Td(z). The solution is derived from expression (53) considering
the reference model, as

Td(z) =
Cd(z)G(z)

1+Cd(z)G(z)
, (62)

where the controller Cd(z) is defined as the ideal controller since it is the exact solution of (61),
and is given as

Cd(z) =
Td(z)

G(z)(1+Td(z))
. (63)

4.1.1 Choosing the reference model

The choice of Td(z) depends on the desired control objectives and must take some precau-
tions into account, which are derived from expression (63). Regarding (63), some concerns about
the properties of the controller Cd(z) may arise. Thus, three main guidelines (BAZANELLA;
CAMPESTRINI; ECKHARD, 2012) should be taken into account in order to avoid problems
with the controller:
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1. Causality: the relative degree of the reference model Td(z) must be equal or greater than

the relative degree 1 of the process G(z);

2. Internal stability: in the presence of non-minimum phase zeros at the process G(z), those

must be included at the reference model Td(z);

3. Realistic ambition: the reference model Td(z) should be sufficiently close to what is

possible to be achieved with the considered controller class C.

The causality guideline guarantees that the relative degree of Cd(z) is non-negative, which makes
the obtained controller causal and, therefore, possible to be applied in simulation or in practice.
The first guideline requires the knowledge of the relative order of the process G(z). Whilst,
the internal stability guideline requires the knowledge of the NMP zeros of the process. The
inclusion of the NMP zeros to the reference model allows for the cancellation of the poles
outside of the unit circle that would appear in Cd(z), considering expression (63). The presence
of unstable poles in the controller is an undesired characteristic, since it leads to an internally
unstable system (SKOGESTAD; POSTLETHWAITE, 2005).

Concerning performance, the realistic ambition guideline states that Td(z) should be
chosen not requiring a too ambitious performance for the chosen controller structure - or class.
E.g., a pure proportional controller itself would not be able to meet a null error in steady-state
requirement for type-0 plants. Nevertheless, three control objectives can be highlighted:

1. Null error in steady-state. To be achieved, T (e jΩ0) = 1 must be guaranteed for the fre-
quency of interest Ω0, e.g., for dc-dc converters (KAZIMIERCZUK, 2008), aiming to
control the output voltage, the frequency of interest is zero, whilst for inverters (ERICK-
SON; MAKSIMOVIC, 2001), the frequency of the output voltage is non-null - 50 Hz,
60 Hz;

2. Desired settling time for reference tracking performance analysis. It is imposed to Td(z)

according to its dynamic behavior, defined mainly by its poles;

3. Overshoot criteria for a step reference. It is usually desirable to limit the overshoot for a
step reference, avoiding practical problems at the controlled plant.

4.2 VIRTUAL REFERENCE FEEDBACK TUNING

The Virtual Reference Feedback Tuning (VRFT) (CAMPI; LECCHINI; SAVARESI,
2002) is a data driven controller design technique that solves the MRC problem. It requires only a
single batch of input-output data (one-shot) to minimize its cost function, which is adapted from
(61) and can be solved by the use of least squares when the controller is linearly parameterized
as in (55). The result is the controller parameters ρ , considering a predefined controller class C.
1 Relative degree = (order of the denominator) - (order of the numerator).
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The closed-loop block diagram for the VRFT controller design is illustrated in Figure 8,
where disturbances and any type of noise are neglected. First, consider an experiment with the
process G(z), where an input signal u(k), with a sufficient excitation order (LJUNG, 1999), is
applied to the process, obtaining the output signal y(k). The input and output signals are acquired,
forming the data batch {u(k),y(k),k = 1...N}, where N is the number of samples. A virtual error
can be given as ē(k) = r̄(k)− y(k) = (T−1

d (z)− 1)y(k), in which r̄(k) is the virtual reference

signal obtained through the reference model Td(z) and the output signal y(k). In summary, a
controller C(z,ρ) = ρ ′C̄(z) is considered satisfactory if it generates u(k) when fed by ē(k).

Figure 8 – Closed-loop block diagram for the VRFT controller design.

Source: (REMES et al., 2021b).

The MRC problem (61) is rewritten into a quadratic problem, resulting in the VRFT cost
function

minimize
ρ

JV R(ρ) (64a)

JV R(ρ) = ||u(k)−C(z,ρ)ē(k)||22, (64b)

which has the same minimum of (61) if the ideal controller Cd(z) in (63) belongs to the controller
class C = {C(z,ρ),ρ ∈ Rp}. The solution of (64) is obtained by least squares, as presented in
Subsection 2.5.1, by rewriting (64b) as

JV R(ρ) = ||u(k)−ρ
′
φ(k)||22, (65)

where φ(k) = C̄(z)ē(k), resulting in

ρ̂ =

[
N

∑
k=1

φ(k)φ ′(k)

]−1 N

∑
k=1

φ(k)u(k). (66)

In a practical case (66) would result in a biased estimation of ρ̂ , since the noise term v(k)

is present in the process. To cope with this, instrumental variables can be used to eliminate
estimation bias (BAZANELLA; CAMPESTRINI; ECKHARD, 2012; CAMPI; LECCHINI;
SAVARESI, 2002), requiring the acquisition of a second data batch. In practice, if there are
no considerable memory restrictions, two identical input sequences can be used at the same
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experiment. The acquired signals can be synced afterwards, resulting in two batches of input-
output data from a single experiment.

In a practical case, the ideal controller is unknown - it is not possible to know, a priori,
whether it belongs to the defined controller class. Thus, a filter L(z) can be used to deal with the
mismatch between the controller class and the ideal controller, by approximating the minima
of JV R and JMR. The magnitude of the filter L(z) must satisfy the relation (BAZANELLA;
CAMPESTRINI; ECKHARD, 2012)

|L(e jΩ)|2 = |Td(e jΩ)|2|1−Td(e jΩ)|2 Φr(e jΩ)

Φu(e jΩ)
, ∀Ω ∈ [−π,π], (67)

where x(e jΩ), with x being any signal, represents the Discrete Fourier Transform of x(k),
Φr(e jΩ),Φu(e jΩ) are, respectively, the power spectra of the signals r(k),u(k). Any filter L(z)

that satisfies the magnitude restriction given in (67) approximates JMR and JV R minima. Since
Φr(e jΩ) is the spectra of the reference signal and Φu(e jΩ) is the spectra of the input signal,
choosing an input signal with the same waveform of the reference signal r(k) that would be
posteriorly applied to the plant, the relation Φr(e jΩ)/Φu(e jΩ) can be considered unitary, allowing
to obtain the filter - in this specific case - in the following implementable form:

L(z) = Td(z)(1−Td(z)). (68)

Considering the filter L(z) in the formulation, the cost function (65) becomes

JV R(ρ) = ||L(z)(u(k)−ρ
′
φ(k))||22, (69)

with the least squares solution given by

ρ̂ =

[
N

∑
k=1

φL(k)φ ′
L(k)

]−1 N

∑
k=1

φL(k)uL(k), (70)

where φL(k) = L(z)φ(k) and uL(k) = L(z)u(k) are the φ(k) and u(k) signals filtered by L(z).
At the presence of NMP zeros at the process G(z), as aforementioned in Section 4.1, such

zeros must be included in Td(z) to avoid poles outside the unit circle in the obtained controller
Cd(z). Notice that, even that the poles of the controller are fixed a priori due to the chosen
controller structure, the VRFT problem seeks for a solution as close as possible to the ideal
controller. Therefore, if the ideal controller is internally unstable, the identified controller will
try to mimic its behavior, possibly leading to disastrous results, which highlights the importance
of following guidelines at Subsection 4.1.1 to choose a reference model. The VRFT technique
has as premise that the process G(z) is completely unknown, except for its approximated relative
order. Therefore, the location of the NMP zeros in the plant, if present, are also unknown. The
inclusion of a flexible reference criterion at the VRFT cost function solves such problem and is
presented in the next subsection.
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4.2.1 Virtual Reference Feedback Tuning with flexible criterion

The VRFT with flexible criterion (CAMPESTRINI et al., 2011) extends the VRFT
method to the case of non-minimum phase plants. In this case, the controller parameter ρ is
identified altogether with the zeros of the reference model, which ideally should be equal to the
NMP zeros of the process G(z).

The extension is done by considering a parameter vector η ∈ Rm that represents the gain
and the m−1 zeros of Td(z,η). The reference model can, then, be written as

Td(z,η) = η
′F(z), (71)

where F(z) is a vector of transfer functions with dimension m. Firstly, Td(z) in (69) can be
changed by Td(z,η), as

J̃V R(ρ,η) = ||L(z)[u(k)−ρ
′C̄(z)(1−T−1

d (z,η))y(k)]||22. (72)

which can be multiplied by Td(z,η) = η ′F(z) to avoid the parameter η in the denominator,
resulting in the flexible criterion

J̃V R(ρ,η) = ||η ′F(z)L(z)[u(k)−ρ
′C̄(z)(1−η

′F(z))y(k)]||22. (73)

Notice that (73) is bilinear in ρ and η simultaneously, allowing for the obtention of a solution
through successive least squares.

The cost function, then, becomes

minimize
ρ,η

J̃V R(ρ,η) (74a)

J̃V R(ρ,η) = ||η ′F(z)L(z)[u(k)−ρ
′C̄(z)(1−η

′F(z))y(k)]||22. (74b)

which can be solved, at the ith iteration, as:η̂i = argminη J̃V R(ρ̂i−1,η);

ρ̂i = argminρ J̃V R(ρ, η̂i).
(75)

Notice that (75) requires an initial value of ρ̂ , named ρ̂0, or η̂ , called η̂0. Since the filter L(z)

becomes L(z,η), it needs to be updated at each iteration according to η̂ , changing the magnitude
requirement of (67) to

|L(e jΩ,η)|2 = |Td(e jΩ,η)|2|1−Td(e jΩ,η)|2 Φr(e jΩ)

Φu(e jΩ)
, ∀Ω ∈ [−π,π]. (76)

The solution for (75), at iteration i for η̂i, is obtained as

η̂i =

[
N

∑
k=1

φη(ρ̂i−1,k)φ ′
η(ρ̂i−1,k)

]−1 N

∑
k=1

φη(ρ̂i−1,k)τη(ρ̂i−1,k), (77)
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with
φη(ρ,k) = F(z)(uL(k)+ρ

′C̄(z)yL(k)), (78)

τη(ρ,k) = ρ
′C̄(z)yL(k), (79)

and for ρ̂i as

ρ̂i =

[
N

∑
k=1

φρ(η̂i−1,k)φ ′
ρ(η̂i−1,k)

]−1 N

∑
k=1

φρ(η̂i−1,k)τρ(η̂i−1,k), (80)

where
φρ(η ,k) = C̄(z)(1−Td(z,η))yL(k), (81)

τρ(η ,k) = Td(z,η)uL(k), (82)

with uL(k) = L(z,η)u(k) and yL(k) = L(z,η)y(k). Notice that the solutions presented in (77) and
(80) still result in a biased estimation in the presence of noise v(k). Nevertheless, instrumental
variables can be used the same way as aforementioned. It is worth to mention that, although the
solution for the VRFT with flexible criterion is iterative, it still only requires a single batch of
data.

4.3 FINAL CONSIDERATIONS

This chapter presented the Model Reference Control, which is used as a base for the
Virtual Reference Feedback Tuning method, also addressed here. The VRFT is detailed for the
cases where NMP zeros are present or not. A filter is used to suppress the mismatch between
the chosen controller class and the required controller to achieve the reference model dynamic
behavior in closed-loop. Both VRFT solutions rely only on a single batch of data and can be
obtained through least squares.
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5 SWARM INTELLIGENCE ALGORITHMS

Metaheuristics are optimization methods mainly used for complex problems that find an
approximate solution, ideally close to the optimal solution (TALBI, 2009). Swarm intelligence
algorithms are metaheursitics that mimic the social behavior of animals. They are stochastic
algorithms, iterative, and population-based - i.e., they have several search agents, which enhance
the diversity of the searching.

The NFL theorems (WOLPERT; MACREADY, 1997) state that a metaheuristic opti-
mization algorithm that does well on average for a class of problems, will do worse on average
over other class of problems. There is a need, thus, to test more than one algorithm for the
proposed problem. Within all the metaheuristic classes of algorithms, the swarm intelligence
algorithms are chosen to be used since they present the least number of hyperparameters within
metaheuristics (NADIMI-SHAHRAKI; TAGHIAN; MIRJALILI, 2021). In this chapter, four
swarm intelligence algorithms are presented and detailed according to the following sections,
for the reasoning described in Section 2.5.2: Particle Swarm Optimization (PSO) (KENNEDY;
EBERHART, 1995); Artificial Bee Colony (ABC) (KARABOGA; BASTURK, 2007); Grey
Wolf Optimizer (GWO) (MIRJALILI; MIRJALILI; LEWIS, 2014); and Improved Grey Wolf
Optimizer (I-GWO) (NADIMI-SHAHRAKI; TAGHIAN; MIRJALILI, 2021).

5.1 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (KENNEDY; EBERHART, 1995) is a stochastic particle
system in which the position and velocity (social behavior) of each particle is adjusted at each
iteration. The population number is static during the optimization procedure. The PSO is said to
mimic the buzzing, flocking, and schooling behavior of bees, birds, and fish (TALBI, 2009; DU;
SWAMY, 2016; KENNEDY; EBERHART, 1995).

In the basic model of the PSO, ℓ particles that start at a random location with random
velocity compose the swarm within a search space of dimension D. The main characteristics
of a particle i are its position (

−→
X i = {Xi1,Xi2, ...,XiD}) and its velocity (

−→
V i = {Vi1,Vi2, ...,ViD}).

Each particle is considered to be a possible solution for the problem. The velocity of a particle is
calculated as

−→
V i(n) =

−→
X i(n)−

−→
X i(n−1), where

−→
X i(n−1) and

−→
X i(n) are the locations of the

particle i in space at instant n−1 and n, respectively. The best solution ever found by a particle
(pbest i), i.e., locally, is stored in a vector

−→
P i = {Pi1,Pi2, ...,PiD}. The best global solution ever

found by the swarm (gbest) is stored as
−→
G = {G1,G2, ...,GD}.

The new values of position and velocity at each iteration depend on their previous values,
as well as on their neighborhood. The update of velocity at each iteration is given by:

−→
V i(n) = w1

−→
V i(n−1)+w2C1(

−→
P i −

−→
X i(n−1))+w3C2(

−→
G −−→

X i(n−1)), (83)

where w1 represents inertia, i.e., a weight that controls the impact of previous velocity (
−→
V (n−1))

at the current velocity (
−→
V (n)), w2 and w3 are random variables such that w2,w3 ∼ U(0,1),
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constant C1 is the cognitive learning factor (the attraction of a particle to its own success), and
constant C2 is the social learning factor (attraction of a particle to the success of its neighbors)

After updating the velocity, the position of each particle is updated according to

−→
X i(n) =

−→
X i(n−1)+

−→
V i(n). (84)

Any particle might generate a solution with less fitness at each iteration. Thus, the current best
solution is checked and updated as

−→
P i(n+1) =

−→
X i(n), if f (

−→
X i)<

−→
P i(n);

−→
P i(n+1) =

−→
P i(n), otherwise,

(85)

where f (·) is the mapping of the cost function that the algorithm is optimizing. The update of
the global solution, i.e., the best solution found by all the swarm within all iterations, is done
accordingly: 

−→
G (n+1) =

−→
Xi (n), if f (

−→
X i(n))< G(n);

−→
G (n+1) =

−→
G (n), otherwise.

(86)

The point where a particle will cycle around is given by the weighted average of the best
local position visited by each particle

−→
P i = {Pi1,Pi2, ...,PiD} and the best global position visited

by the swarm
−→
G = {G1,G2, ...,GD}:

w2
−→
P i +w3

−→
G

w2 +w3
. (87)

A stopping criterion is responsible for stopping the execution of the PSO, which is usually:
an external function; a minimum cost to be obtained; or a maximum number of iterations. The
best global solution

−→
G (n+1) at the iteration when the algorithm stops is taken as the solution of

the optimization problem.

5.2 ARTIFICIAL BEE COLONY

The artificial bee colony algorithm simulates the foraging behavior of honey bees. The
bees conduct a local search at each iteration for food (nectar) sources. Each food source (position
vector) is a possible solution based on its availability of nectar (fitness). The maximum number
of food sources are limited, and for each food source, there is an employed bee looking for nectar
(DU; SWAMY, 2016; KARABOGA; BASTURK, 2007).

The bees are classified in three main types: i) employed bees, which are bees that look
for food sources in the neighborhood of a current food source that is being explored; ii) onlooker
bees that receive information of all food sources and select the best ones; and iii) scouts, which
are bees that look for new food sources when a current food source cannot be improved anymore.

The execution of the algorithm is divided in four phases:
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1. Initialization phase: −→X i = {Xi1,Xi2, ...,XiD} are the ℓ food sources with dimension D, in
which i = 1, ..., ℓ, and are initialized according to

−→
X i(0) = lb + rb(ub − lb), (88)

where lb is the lower search bound, ub is the upper search bound, and rb is a random
number such that rb ∼U(0,1).

2. Employed bees phase: employed bees are bees that are collecting nectar from a food
source and, simultaneously, looking for better food sources on its neighborhood, with
position updated at each iteration according to

−→
X i(n+1) =

−→
X i(n)+ ra(

−→
X i(n)−

−→
X r(n)), (89)

where
−→
X i(n+ 1) is the food source at iteration n+ 1 and

−→
X i(n) is the food source at

iteration n, ra is a random number such that ra ∼U(−a,a) where a is named acceleration
coefficient, and

−→
X r(n) is an existing food source from iteration n that is randomly selected.

The food source at iteration n and the new found food source at iteration n+1 are compared.
A greedy selection - that compares food sources and choose the best one in terms of food
(cost) - decides which food source will be considered at the next iteration. The information
of the position of food sources and the amount of nectar (fitness) is shared with the
onlooker bees, which are waiting in the hive;

3. Onlooker bees phase: when onlooker bees receive information from the employed bees
about the food sources positions and fitness, a food source is selected among all L food
sources with probability Pi, defined as

Pi =
f (
−→
X i)

∑
L
j=1 f (

−→
X j)

, (90)

where f (·) is the mapping of the cost function to be minimized, which evaluates the fitness
of a solution

−→
X i. When a food source is selected, a neighbor food source is determined by

expression (89). A greedy selection is applied to both food sources, maintaining the one
with more nectar (less fitness);

4. Scout bees phase: when a food source (solution) cannot be improved anymore for a
determined number of iterations, or the limit L - the maximum allowed number of food
sources - is reached, the employed bees abandon the food source and become scouts, which
randomly choose a new food source as done in the initialization phase (88).

The bees’ phases (2, 3, and 4) are repeated until a stopping criterion is met, i.e., maximum
number of iterations, cost threshold obtained, etc. At the end of the execution, the food source
with more nectar (less fitness) is considered as the global solution and, therefore, the solution of
the optimization problem.
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5.3 GREY WOLF OPTIMIZER

The GWO algorithm is based on grey wolves’ social hierarchy and hunting behavior. In a
pack, there are four types of wolves: i) alphas, which are the leaders, responsible for making
decisions; ii) betas, subordinates to the alphas that help in decision-making and other pack
activities; iii) deltas, which represent scouts, sentinels, elders, hunters, and caretakers; and iv)
omegas, which compose the rest of the pack and submit to higher ranking wolves (MIRJALILI;
MIRJALILI; LEWIS, 2014).

All ℓ wolves are initialized randomly (with an uniform distribution) within the whole
search space. The three best solutions (wolves positions) of the optimization procedure are
defined by the position vectors alpha (

−→
X α ), beta (

−→
X β ), and delta (

−→
X δ ). The rest of the wolves

are assumed to be omega, with position
−→
X ω,k, where k represent a specific wolf among the

omegas with k ∈ {1...ℓ− 3}, and will follow the three best solutions, according to the mean
value of those.

Grey wolves present an encircling behavior to its prey when hunting, which can be
mathematically modeled as follows: the displacement of the α , β , and δ wolves is defined as

−→
D p(n) = |−→C −→

X p(n)−
−→
X i(n)|, (91)

where
−→
C = 2−→r 1, r1 ∈ Rp is a random vector such that r1 ∼ U(0,1), and p ∈ {α,β ,δ}, and

−→
X i(n) is the position a wolf i ∈ {α;β ;δ ;ω,k} that is being updated. The weighted position of
the three wolves with the best solution in terms of cost at iteration n, i.e.,

−→
X p, p = {α,β ,δ}, are

calculated as
−→
X wα =

−→
X α(n)−

−→
A 1

−→
D α(n), (92)

−→
X wβ =

−→
X β (n)−

−→
A 2

−→
D β (n), (93)

and
−→
X wδ =

−→
X δ (n)−

−→
A 3

−→
D δ (n), (94)

with coefficient vectors
−→
A i, i = 1,2,3 given by

−→
A i = 2−→a −→r 2 −−→a , (95)

where −→a is linearly decreased from 2 to 0 over iterations in order to mathematically model the
approaching to the prey during the encircle, and r2 ∈Rp is a random vector such that r2 ∼U(0,1).
The position of all wolves in the pack, for the next instant (n+1), is calculated as

−→
X i(n+1) =

−→
X wα +

−→
X wβ +

−→
X wδ

3
. (96)

Since the position of all wolves at iteration (n+ 1) are updated, the three wolves with lower
fitness at this iteration are now considered to be the alpha, beta, and delta, whilst the rest is taken
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as omega. Also, notice that the position of the prey is mathematically described as the average of
the three best solutions. From the encircling behavior, the prey should be approximately in the
middle of the three “best” wolves at the iteration in question.

The optimization procedure continues until a user defined stopping criterion is met. The
best found solution at the stopping iteration, the position of the alpha

−→
X α , is considered the

solution of the minimization procedure.

5.4 IMPROVED GREY WOLF OPTIMIZER

The GWO algorithm, although effective, has shown three main problems that can be
observed in literature (HEIDARI; PAHLAVANI, 2017; LONG et al., 2018; LU; GAO; YI, 2018;
TU; CHEN; LIU, 2019):

1. Lack of population diversity, meaning that the wolves in GWO only follow hierarchy, not
being influenced by its close neighbors;

2. Imbalance between the exploitation and exploration;

3. Premature convergence.

As an extension to suppress such problems, the Improved Grey Wolf Optimizer (NADIMI-
SHAHRAKI; TAGHIAN; MIRJALILI, 2021) presents a change in the search strategy of the
main GWO algorithm, composed of three phases: initialization; movement; selection and update.
The three phases of the I-GWO algorithm are described below:

1. Initialization: ℓ grey wolves are randomly distributed throughout the search space, with
lower bound l j and upper bound u j, as

−→
X i j = l j + r j(u j − l j), i ∈ [1, ℓ], j ∈ [1,D], (97)

where D is the problem’s dimension,
−→
X i j forms a population matrix of grey wolves Pop,

and r j is a random variable such that r j ∼U(0,1);

2. Movement: one of the improvements of the I-GWO algorithm in relation to the GWO
algorithm is the inclusion of individual hunting. This is done through a strategy named
Dimension Learning-based Hunting (DLH). A radius is defined as the Euclidean distance
between the current position

−→
X i(n) and the GWO candidate position

−→
X i,GWO(n+ 1),

which is calculated the exact same way as in GWO via (96), as

−→
R i(n) = ||−→X i(n)−

−→
X i,GWO(n+1)||22. (98)

The neighbors of
−→
X i(n), denoted by

−→
N i(n), can be defined as

−→
N i(n) =

{−→
X j(n) | ||

−→
X i(n)−

−→
X j(n)|| ≤

−→
R i(n),

−→
X j(n) ∈ Pop

}
i ∈ [1, ℓ], j ∈ [1,D].

(99)
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Multi-neighbor learning (DLH) is performed, resulting in the DLH candidate solution

−→
X i,DLH(n+1) =

−→
X i(n)+ ri(

−→
X n(n)−

−→
X r(n)), (100)

where
−→
X n(n) is a random neighbor within neighborhood

−→
N i(n),

−→
X r(n) is a random grey

wolf from the population matrix Pop, and ri a random vector such that ri ∼U(0,1);

3. Selection and update: at the last phase, the fitness value of all solutions (wolves) are
compared and selected, if the fitness is less than the lowest fitness obtained already,
according to:

−→
X i(n+1) =


−→
X i,GWO(n+1), if f (

−→
X i,GWO(n+1))< f (

−→
X i,DLH(n+1));

−→
X i,DLH(n+1), otherwise.

(101)

The best solution ever found is updated if
−→
X i(n) has a fitness value that is greater than

the new possible best solution,
−→
X i(n+1), evaluated by f (

−→
X i(n+1)), where f (·) is the

mapping of the cost function to be minimized.

An user defined stopping criterion is responsible for stopping the execution of the I-GWO
algorithm, may it be a maximum number of iterations or a minimum required fitness value. The
position of the alpha wolf,

−→
X α , at the last executed iteration, is considered to be the solution of

the optimization procedure.

5.5 FINAL CONSIDERATIONS

The four swarm intelligence algorithms considered in this work were detailed in this
chapter. PSO regards the movement of particles within a search space, imitating the flocking of
birds (or similar animal behavior). The ABC algorithm mimics the foraging behavior of honey
bees. GWO and I-GWO relates to the hunting of grey wolves, with the I-GWO presenting certain
improvements to the algorithm of the GWO in order to avoid local minima.

A relevant characteristic of the algorithms to the user is the number of hyperparameters
that are needed to be set, arbitrarily or not. Table 5 shows the parameters that shall be chosen
by the user for each mentioned algorithm. As it can be seen in Table 5, the GWO and I-GWO
present the least number of hyperparameters, whilst PSO has the most.
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Table 5 – Hyperparameters of the considered swarm intelligence algorithms.

Algorithm Parameter settings

PSO

Maximum number of iterations
Number of agents (ℓ)

Cognitive learning factor (C1)
Social learning factor (C2)
Inertia range (range of w1)

ABC

Maximum number of iterations
Number of agents (ℓ)

Limit of food sources (L)
Acceleration coefficient (a)

GWO
Maximum number of iterations

Number of agents (ℓ)

I-GWO
Maximum number of iterations

Number of agents (ℓ)

Source: the author.
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6 THE PROPOSED METHOD: VIRTUAL REFERENCE FEEDBACK TUNING WITH
ROBUSTNESS CONSTRAINT

This chapter presents the proposed method of this thesis: a two-step procedure, where
the first step follows the design of a controller by the VRFT method as commented in Chapter 4.
The second step consists on the application of swarm intelligence algorithms to increase the
robustness of the closed-loop system by finding new controller parameters, based on the solution
of step one.

6.1 ESTIMATION OF ROBUSTNESS INDEX WITH A SINGLE BATCH OF DATA

The method to estimate the H∞ norm of S(z,ρ), described in Section 3.2, considers the
closed-loop data obtained with the already designed controller C(z, ρ̂), providing the robustness
index of the controlled system. Such MS estimation needs to be extended to a case where the
norm of S(z, ρ̂) is dependent of C(z, ρ̂), in order to maintain the one-shot characteristic during
the metaheuristic optimization procedure. The same data that was acquired for the VRFT design
is used to estimate the robustness index.

Considering the system described in Subsection 2.3, and that the controller is dependent
of the parameter vector ρ , its sensitivity transfer function S(z,ρ) is obtained from

T (z,ρ) =
C(z,ρ)G(z)

1+C(z,ρ)G(z)
(102)

and
S(z,ρ)+T (z,ρ) = 1, (103)

resulting in

S(z,ρ) =
1

1+C(z,ρ)G(z)
, (104)

which can be rewritten as
1+C(z,ρ)G(z) = S−1(z,ρ). (105)

Assuming that u(k) is sufficiently informative to capture all relevant characteristics of
S(z,ρ), and multiplying both sides of (105) by u(k), it is obtained that

u(k)+C(z,ρ)G(z)u(k) = S−1(z,ρ)u(k). (106)

It is known that G(z)u(k) = y(k). Substituting such relation in (106):

u(k)+C(z,ρ)y(k) = S−1(z,ρ)u(k). (107)

Finally, the signals
ξ (k) = u(k), ζ (k) = u(k)+C(z,ρ)y(k), (108)

can be defined such that S(z,ρ)ζ (k)= ξ (k), i.e., when a signal ζ (k) formed by u(k)+C(z,ρ)y(k)

is applied to S(z,ρ), an output ξ (k) = u(k) is obtained. The impulse response of S(z,ρ), and
consequently the H∞ norm (i.e., the robustness index), can be estimated with the data set
{ξ (k),ζ (k),k = 1...N}, through the method presented in Chapter 3.
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6.2 DESCRIPTION OF THE METHOD

The Virtual Reference Feedback Tuning with robustness constraint can be divided in two
main steps. The first step of the proposed method regards the design of a controller using the
VRFT as presented in Chapter 4. It is assumed that a batch of input-output data, used in step 1 to
design the controller, is available. The second step accounts for the use of swarm intelligence
algorithms to minimize a modified VRFT cost function, with an H∞ robustness constraint, as
presented below. Figure 9, at the end of the chapter, summarizes the method in a flowchart form
and can be used to increase the comprehension of the method description in the next subsection.

6.2.1 Robustness constraint to the VRFT formulation

The VRFT is based on the optimization of a cost function, as described in Chapter 4. An
extension to the formulation, regarding a robustness constraint - the H∞ norm of S(z,ρ) - at such
cost function (69) leads to a new optimization problem:

minimize
ρ

JV R(ρ)

subject to M̂S(ρ)≤ MSd,
(109)

where M̂S(ρ) is the estimated ||S(z,ρ)||∞ and MSd is the maximum allowed value. The constraint
can be applied to the cost function in the form of a penalty or a barrier, as mentioned in Chapter 2,
Section 2.5. It is chosen to apply the constraint in the form of a penalty, since the resultant cost
function does not present any, even that minimal, constraint, which is not the case for barrier
methods. The resultant Swarm Intelligence optimization cost function is:

minimize
ρ

JSI(ρ) (110a)

JSI(ρ) = JV R(ρ)+ cH(ρ) (110b)

where JV R(ρ) = ||L(z)(u(k)−C(z,ρ)(T−1
d (z)−1)y(k))||22 and the penalty term can be applied

as
H(ρ) =

1
2
(max[0,M̂S(ρ)−MSd])

2, (111)

as a function of ρ , accounting for the estimated (M̂S) and desired (MSd) maximum value of the
robustness index. Such index is estimated at each iteration of the swarm algorithm optimization,
according to the method presented in Chapter 3 with the extension at Section 6.1.

The considered search space is O ∈ [lb,ub], lb,ub ∈ R, where lb is the lower bound and
ub is the upper bound. In order to accelerate convergence, the initialization of the swarm agents
may inherit the first step solution (the VRFT solution), which is denoted as ρ0 ∈ Rp, as a central
point of spawn, as

−→
X i(0) = R ·−→X (0)+ρ0, i ∈ [1, ℓ] (112)
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where
−→
X (0)∈Rp is a random position vector such that

−→
X (0)∼U(0,1) and the initial population

spawn radius can be defined as

R =
|lb|+ |ub|

2
, (113)

since it reduces the initial spawn radius in half which accelerates the convergence of the meta-
heuristic optimization algorithm. In other words, it is assumed that the robust solution is possible
inside a disk, centered in ρ0, with radius R. In order to use (113), it is considered that the designer
will have a realistic ambition when selecting the value of MSd , since, e.g., a too low value of
desired maximum robustness index for a closed-loop system with a very high robustness index
may result in a very poor reference tracking performance. If the chosen MSd is not too far from
the actual MS of the system with the VRFT-designed controller, the robust-constrained solution
should not be too far from the VRFT-obtained solution, which would be located inside the biased
spawn radius (113).

An inherent step of the proposed method is to collect input-output data from the process.
Remember that, for data to be sufficiently informative, the input signal used as excitation to the
system must be persistently exciting of high order (LJUNG, 1999). After the acquisition of data,
the two steps of the proposed method can be applied:

1. Use the VRFT to design a controller for the process. Use a flexible reference model if
the plant is NMP, as done in the base literature (CAMPESTRINI et al., 2011). Check the
obtained robustness index, proceed to the second step if it does not satisfy M̂S < MSd . Such
main step can be divided into the following specific steps:

• acquire a data set {u(k),y(k),k = 1...N} from the closed-loop system with an
initial stabilizing controller;

• use the data set to design a controller using the VRFT method, as detailed in
Chapter 4. Controller parameters ρ̂ are obtained after the minimization procedure
of the VRFT method. In the NMP case, parameters for the reference model η̂ are
also obtained;

• estimate the robustness index according to the method in Section 6.1. If M̂S > MSd

proceed to the second step, else, use the VRFT-obtained controller with no further
modification.

2. Apply a swarm intelligence algorithm considering the optimization problem described in
(110) according to a desired value of MS, with restriction applied in the form of a penalty
as (111), with initial spawn of agents following the recommendation of (112). Such main
step can be divided into the following specific steps:

• implement the VRFT cost function with the penalty as in (111) regarding the
desired maximum value of MS;
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• change the initialization procedure of the chosen swarm intelligence algorithm to
consider a center spawn ρ0, i.e., the VRFT-obtained solution at the first step, and a
spawn radius as suggested in (112) to accelerate convergence;

• run the algorithm and obtain controller parameters that satisfy the robustness
restriction.

6.3 FINAL CONSIDERATIONS

This chapter formulated the proposed method according to the previously mentioned
subjects and techniques. It consists of a two-step method. The first step regards the design of
a controller using the VRFT, and the second addresses the application of a swarm intelligence
algorithm to a cost function based on the VRFT with the inclusion of a robustness constraint in
the form of a penalty.
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Figure 9 – Flowchart diagram summarizing the proposed robust solution for VRFT using swarm
intelligence algorithms.
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7 VALIDATION RESULTS

This chapter validates and illustrates the proposed method with two examples inspired on
the structure of dc-dc converters. The application of the method is done as suggested in Chapter 6,
considering the swarm intelligence algorithms presented in Chapter 5. The obtained results are
compared in terms of: i) fitness value obtained considering the best solution of the swarm
(best fitness); ii) H∞ norm of S(z,ρ), MS, obtained with the best solution; and iii) convergence
speed. Notice that the system model is only used in simulation for data acquisition, whilst its
model knowledge is neglected at all stages of the design procedure, keeping a pure data-driven
approach.

Most of the results in this chapter are analyzed in terms of box plots, which are graphical
representations of data through quartiles, presenting information regarding their median, maxix-
mum and minimum values, as well as their dispersion - mentioned sometimes as the standard
deviation. Outliers, which differ significantly from the rest of the database, are also indicated in
the box plots. Each box plot is followed by a table with the most relevant values regarding the
graphical representation.

7.1 EXAMPLE 1: A SECOND-ORDER PLANT

The first system to be considered is

G1(z) =
−0.05(z−1.4)

z2 −1.7z+0.7325
(114)

which is similar to the structure of a discrete-time model of a Boost/Buck-Boost type converter
operating in Continuous Conduction Mode (CCM) when regarding the output voltage by duty
cycle transfer function (ERICKSON; MAKSIMOVIC, 2001), containing two complex conjugate
poles and a zero. The model parameters were chosen such that the robustness index, obtained
after the VRFT design, was higher than 2 (absolute). As the zero is outside of the unit circle,
the plant can be classified as Non-Minimum Phase (NMP), requiring for the use of a flexible
criterion at the VRFT design procedure (CAMPESTRINI et al., 2011). The plant G1(z) is used
to simulate a real system, from which data is collected in order to design the controller. Notice
that the system model G1(z) is assumed unknown for controller design, so there is no prior
knowledge about its zero or any other parameter.

7.1.1 Data collection

The data {u(k),y(k),k = 1...N} for the VRFT design is acquired in closed-loop with
an initial proportional stabilizing controller (REMES et al., 2021a). The small gain theorem
(SKOGESTAD; POSTLETHWAITE, 2005) states that a proportional controller is stabilizing if

kp <
1

||G||∞
. (115)
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Therefore, the controller is obtained as

kp =
0.5

||G1(z)||∞
= 0.8039. (116)

The H∞ norm of G1(z) is obtained with the estimation method proposed in Chapter 3.
For the VRFT design, a PRBS with N = 2000 samples is applied as reference to the plant,

in closed-loop with the proportional controller kp obtained in (116). Additive white Gaussian
noise with a Signal-to-Noise Ratio (SNR) of 20 dB was added to the system at the output and
fed back to represent measurement noise.

In order to investigate the presence of NMP zeros at the plant, the IR can be analyzed. In
NMP systems the impulse response initially moves downwards (BRUNTON; KUTZ, 2019) - the
“opposite” direction, see Figure 10 - which can be verified graphically. Observe that the IR can
be estimated with the acquired data set for the VRFT design (step 1 of the proposed algorithm),
{u(k),y(k),k = 1...N}, being available to be analyzed by the user or by a simple algorithm.
The IR, which is presented in Figure 10, can be identified with regularized impulse response
estimation algorithms, as described in Chapter 3 and available in programming libraries (FIORIO;
REMES; NOVAES, 2021; THE MATHWORKS INC., 2021; YERRAMILLI; TANGIRALA,
2017). It can be noted that the first non-null element of the IR has a negative value, which visually
means that the IR initially goes “downwards”, indicating the presence of at least one NMP zero.
Thus, the VRFT must be approached with a flexible reference criterion (CAMPESTRINI et al.,
2011), as detailed in Subsection 4.2.1.

Figure 10 – Identified impulse response of G1(z).

7.1.2 Step 1 - VRFT with flexible criterion

This subsection has the objective of designing a controller using VRFT with flexible
criterion, according to the first step of the proposed method. This controller shall be used as the
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initial controller for the second step. In order to design such controller, the following requirements
are considered:

1. Null error in steady state;

2. Settling time of approximately 2.5 times faster than the settling time in closed-loop with
the stabilizing controller kp;

3. Null overshoot for a step reference.

Notice that such requirements, mainly the 2.5 times faster settling time, relates to a too ambitious
performance, as mentioned in the last chapters. This type of situation may happen in practice,
e.g., if the designer is inexperienced or if the designer has few empirical knowledge about the
plant to be controlled. This poor choice of control requirements is a characteristic that might
result in poor robustness with the VRFT-designed controller.

The null error in steady state can be guaranteed by choosing a reference model such that
Td(e jΩ0) = 1 at the frequency of interest Ω0. Considering that the plant is based in the structure
of a dc-dc converter, the frequency of interest is the frequency of a dc signal, which is zero. Than,
Ω0 = 0, which gives the criteria

Td(1) = 1. (117)

The desired settling time is obtained by the position of the poles of the reference model (REMES
et al., 2021a). Finally, a requirement for null overshoot is to have real poles at the model, resulting
in

Td(z, η̂0) =
−21(z−1.01)

(z−0.7)(z−0.3)
, (118)

Notice that an initial zero is included at 1.01, as suggested in the basis literature (REMES et al.,
2021a), so that the VRFT with flexible reference may identify correctly the NMP zero of the
plant. The controller class, chosen to be used in this example, is the PID class of controllers,

C̄(z) =
[

1
z

z−1
z−1

z

]′
, (119)

since it is a widely used class of controllers, and at the same time, it represents a low order
controller, with fewer hardware requirements to be applied in practice if compared to higher
order controller classes.

Through the VRFT method with flexible criterion, solving the problem (74) through
successive least squares as indicated in Chapter 4, the solution pair η̂ , ρ̂ is obtained as

η̂ =
[
−0.4793 0.6377

]′
(120a)

ρ̂ =
[
1.1246 0.3124 6.9713

]′
, (120b)
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resulting in the reference model Td(z,η) = η ′F(z) and in the controller C(z,ρ) = ρ ′C̄(z):

Td(z, η̂) = η̂F(z) =
−0.6899(z−1.33)
(z−0.7)(z−0.2401)

, (121a)

C(z, ρ̂) = ρ̂
′C̄(z) =

8.4083(z2 −1.792z+0.8291)
z(z−1)

. (121b)

The non dominant pole of Td(z, η̂) is updated according to the identification of η (REMES et al.,
2021a; SILVA; CAMPESTRINI; BAZANELLA, 2016).

The H∞ norm of S(z,ρ) can be estimated according to the method presented in Sec-
tion 6.1, with the acquired data set {u(k),y(k),k = 1...N} and the VRFT-designed controller
C(z, ρ̂), resulting in M̂S = 2.1952, which may be too high for applications that require higher
robustness indexes (SKOGESTAD; POSTLETHWAITE, 2005). The next subsection presents
the application of the proposed method to reduce MS for the obtained VRFT solution.

7.1.3 Step 2 - Swarm intelligence algorithm

The four swarm intelligence algorithms presented in Chapter 5 - PSO, ABC, GWO, and
I-GWO - were used to minimize the proposed cost function (110) considering an initial solution
- or initial spawn central point - equal to the VRFT-designed controller in Subsection 7.1.2,
ρ0 = [1.1246 0.3124 6.9713]′.

The upper search bound is defined as ub = 10, which should be sufficient considering
that the maximum ρ value of the VRFT-obtained controller is 6.9713 and, taking into account a
choice of MSd that is not too ambitious, the parameters values should not differ that much from
the initial ones. The lower search bound, on the other hand, is set to lb = 0 to avoid negative
controller gain, which increases controller’s passivity (BAO; PETER, 2007), and therefore, to
ensure some degree of robustness. In order to better illustrate the search space, Figure 11a shows
the search space in 3 dimensions considering parameters ρ1,ρ2, and Figure 11b exhibits the
search space for the parameters ρ2,ρ3, where ρ = [ρ1 ρ2 ρ3]

′ and J(ρ) is the cost.
The reference model considered in the swarm intelligence optimization is Td(z, η̂). An

initial population spawn radius of R = (|ub|+ |lb|)/2 = 5 is used, as suggested in (113). The
chosen desired H∞ norm of S(z,ρ) to be achieved is 1.8, which is sufficiently robust considering
MSd < 2, as mentioned in the last chapters, and at the same time is not too low to result in a
too poor performance. The constant c to apply the penalty as shown in (111) is set arbitrarily as
1000, that satisfies c >> 1 (LUENBERGER; YE, 2015).

The number of agents of all algorithms is set as 50, as done in the basis literature for the
PSO algorithm (KENNEDY; EBERHART, 1995), and the maximum number of iterations is set
to 100. Each algorithms is run 50 times, with different realizations of the initial positions of the
agents, with spawn radius as aforementioned. Such procedure can be characterized as a Monte
Carlo experiment, since only one random variable (spawn) is being changed at each run. The
hyperparameters for PSO and ABC, besides number of agents and iterations, are provided in
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Figure 11 – Surface of the search space for example 1.
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Table 6, being chosen based on the Global Optimization Toolbox (THE MATHWORKS INC.,
2021) for PSO and in an ABC algorithm implementation commonly mentioned in the literature
(HERIS, 2015). For GWO and I-GWO, the only hyperparameters are the number of agents and
maximum number of iterations.
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At each iteration of the swarm intelligence algorithm, M̂S is estimated with the technique
proposed in Section 6.1, where the length of the identified impulse response is chosen, for each
case, automatically by comparing the variation of two subsequent identified coefficients. If the
variation is less than 1×10−9, the algorithm stops and the IR is considered to be estimated.

Table 6 – Parameters settings for PSO and ABC.

Algorithm Parameter settings Value

PSO
Cognitive learning factor (C1) 1.49

Social learning factor (C2) 1.49
Inertia range (range of w1) [0.1,1.1]

ABC
Limit of food sources (L) 90

Acceleration coefficient (a) 1

Source: the author.

7.1.3.1 Swarm intelligence algorithm results

Once the hyperparameters are all set, the algorithms have been executed. The average
convergence curves of all swarm intelligence algorithms for example 1 are shown in Figure 12.
Table 7 shows the time that each algorithm took by iteration, considering the average of all 50
runs, and the number of iterations needed to converge, considering a δ = 1×10−3 as criterion
for defining convergence. The results were obtained in a personal computer with an Intel Core I5
4670 3.40 GHz processor, with 8 GB of RAM - DDR3 1600 MHz. The I-GWO algorithm took a
longer time to converge, followed by ABC, PSO, and at last, GWO.

Figure 12 – Average convergence curves for all algorithms considering a Monte Carlo
experiment of 50 runs for example 1.

Source: the author.

The box plot presented in Figure 13 regards the final fitness value obtained for all
algorithms throughout the 50 runs. The most desired performance in terms of fitness, standard
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Table 7 – Time for convergence of all algorithms for example 1.

Algorithm 1-iteration time (s) Iterations to converge Time to converge (s)
PSO 8.04 41 329.75
ABC 22.63 19 430.02
GWO 11.25 14 157.53

I-GWO 24.18 20 483.66

Source: the author.

deviation, and number of outliers is observed for I-GWO. In general, PSO, ABC, and GWO
resulted in higher fitness than I-GWO for this example. Some of the relevant quantitative values
regarding Figure 13 are presented in Table 8, which confirm the conclusions taken from the box
plot.

Figure 13 – Box plot of a Monte Carlo experiment with 50 runs for all algorithms in terms of
best fitness value obtained for example 1.

Source: the author.

Table 8 – Quantitative results from the box plot in terms of best fitness for example 1.

Algorithm median σ min max
PSO 0.2032 0.2782 0.2017 2.1710
ABC 0.2334 0.0402 0.2025 0.4009
GWO 0.2489 0.0858 0.2017 0.4764

I-GWO 0.2017 5.0516×10−5 0.2017 0.2018

Source: the author.

The box plot in Figure 14 presents the achieved values for the H∞ norm of S(z,ρ), by
applying the the best solution (controller) obtained at each run of the algorithms in a closed-loop
to G1(z), acquiring data with a PRBS signal with the same characteristics as aforementioned
and estimating the ||S(z,ρ)||∞ norms. The most desired result in terms of M̂S considering the
average value obtained, standard deviation, and number of outliers is achieved by I-GWO. PSO
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obtained satisfactory results except from one outlier. ABC obtained three solutions that resulted
in an M̂S > 2, whilst GWO did not obtain satisfactory results, since there are too many M̂S values
greater than 2. Notice that any solution with an M̂S > 2.1952 have a worse robustness than
the VRFT-designed solution. The quantitative data from the box plot at Figure 14 is presented
in Table 9, confirming the conclusions over the box plot. Similar conclusions regarding each
swarm intelligence algorithm applied to the problem can be drawn from Figure 15, in which the
parameter ρ = [kp ki kd]

′ identified for each algorithm is shown in the form of box plots.

Figure 14 – Box plot of 50 runs for all algorithms in terms of ||S||∞ value obtained for example
1.

Source: the author.

Table 9 – Quantitative results from the box plot in terms of ||S||∞ for example 1.

Algorithm median σ min max
PSO 1.8014 0.1130 1.7509 2.5988
ABC 1.8091 0.4740 9.9798×10−5 2.8496
GWO 1.8087 0.2923 1.7995 2.5760

I-GWO 1.8020 4.5561×10−4 1.8008 1.8030

Source: the author.

To better illustrate the difference between the obtained controller with the swarm intelli-
gence algorithms and the VRFT-obtained controller, one of the I-GWO solutions

ρIGWO = [1.090 0.2194 5.4018] (122)

is applied to the system in the form of a controller CIGWO = ρ ′
IGWOC̄(z), as well as the initial

VRFT controller in (121). For a step signal applied to the system in closed-loop as reference,
the obtained output for the system considering both controllers is shown in Figure 17, with the
controller signals shown in Figure 16. It can be clearly seen that the I-GWO-designed controller
presents a smoother response, with less oscillations and reduced overshoot and undershoot, as
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Figure 15 – Box plot of the obtained kp (ρ(1)), ki (ρ(2)), and kd (ρ(3)) controller parameters
for all algorithms at 50 Monte Carlo experiments for example 1.

(a) kp (b) ki

(c) kd

Source: the author.

well as lower settling time. The observed controller effort for I-GWO is reduced if compared to
the VRFT-designed controller. Obviously, the chosen controller class was not able to achieve the
desired control requirements, even with the presence of a mismatch filter, presenting non-null
overshoot and higher settling time than expected. This type of situation is where the proposed
method of this thesis is better used, since it compensates for the demanding (or bad) choice
of Td(z). Relevant information regarding the closed-loop system with the tested controllers in
Figure 17 are presented in Table 10, where it is shown that the I-GWO-obtained controller
achieved a lower overshoot and undershoot, with a M̂S of 1.8030 - which reduction resulted also
in higher gain and phase margins. The MS was estimated with a validation 1 PRBS signal with
N = 10000 samples.

1 Notice that the term validation is used here to represent a signal that is different from that used in the design.
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Figure 16 – Control signal for a reference step signal applied to the controlled plant with a
controller designed through the proposed method using I-GWO and the

VRFT-designed controller for example 1.

Source: the author.

Figure 17 – Output signal for a reference step signal applied to the controlled plant with a
controller designed through the proposed method using I-GWO and the

VRFT-designed controller for example 1.

Source: the author.
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Table 10 – Comparison between important characteristics of the closed-loop system with the
I-GWO-designed and the VRFT-designed controller for example 1.

Characteristic VRFT I-GWO
Settling time 54 s 39 s

Step overshoot 20 % 9 %
Step undershoot 42 % 33 %

M̂S 2.2079 1.8030
Gain margin 5.18 dB 7 dB
Phase margin 43 ◦ 55.8 ◦

Source: the author.
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7.2 EXAMPLE 2: FOURTH-ORDER PLANT

The process considered in example 2 consists of

G2(z) =
0.1381(z−0.95)(z2 −1.62z+0.6586)

(z2 −1.7z+0.7325)(z2 −1.84z+0.8564)
, (123)

which is similar to the discrete-time model of a SEPIC converter for the transfer function from
duty cycle to output voltage (KASSICK, 2011) - a dc-dc converter which is, essentially, a Boost
converter followed by a Buck-Boost. Since there is no NMP zeros in the plant, the VRFT method
is used without the need of a flexible reference model criterion (BAZANELLA; CAMPESTRINI;
ECKHARD, 2012). Notice that the presence of a NMP zero can be evaluated the same way as in
Section 7.1.

7.2.1 Data collection

The data for example 2 is acquired following the same procedure as described in Sec-
tion 7.1, with a PRBS signal of N = 2000 samples applied to the system, in a closed with a
stabilizing controller, which is obtained as

kp =
0.5

||G2(z)||∞
= 0.3828. (124)

To represent measurement noise, additive white Gaussian noise with an SNR of 20 dB is included
in the system’s output and fed back. The acquired input-output data set is {u(k),y(k),k = 1...N}.

7.2.2 Step 1 - VRFT

With the acquired data, a controller is designed through the VRFT as presented in
Chapter 4. For example 2, the considered control requirements for the VRFT design are:

1. Null error in steady state for a step reference;

2. Settling time of approximately 6.5 times faster than the settling time in closed-loop with
the stabilizing controller kp;

3. Null overshoot for a step reference.

Notice that the settling time requirement is very ambitious and is representing, in this example,
a poor choice of control requirements". The criteria for choosing the reference model Td(z)

considering the aforementioned control requirements follows the same as depicted in Section 7.1.
Notice that as the SEPIC is a dc-dc converter, the frequency of interest is kept as Ω0 = 0. Also,
the poles are chosen in order to meet the settling time requirement, being kept real to avoid
overshoot. Nevertheless, the reference model is

Td(z) =
1.4(z−0.6)

(z−0.3)(z−0.2)
. (125)
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Suppose a situation where the controller is applied to the plant through limited hardware,
where only a PI controller can be used. Thus, the controller class for this example is

C̄(z) =
[

1
z

z−1

]′
. (126)

The obtained controller through the VRFT is given by the parameters

ρ = [6.6568 3.3728], (127)

which, from (55), results in the controller

C(ρ,z) = ρ
′C̄(z) =

10.03(z−0.6637)
(z−1)

. (128)

Estimating the H∞ norm of S(z,ρ) with the technique presented in Chapter 3 and the
extension from Section 6.1, with data-set {u0(k),y0(k),k = 1...N} and controller C(z,ρ), an
M̂S = 2.2767 is obtained. In order for the system to be sufficiently robust for general applications,
an MS ≤ 2 is desired. Therefore, the proposed solution with swarm intelligence algorithms is
applied.

7.2.3 Step 2 - Swarm intelligence algorithm

The swarm intelligence algorithms mentioned in Chapter 5 - PSO, ABC, GWO, and
I-GWO - are considered to be applied to minimize the problem (110). The upper and lower
search bounds are, respectively, ub = 10 and lb = 0, where the lower bound is chosen to increase
the passivity of the controller (BAO; PETER, 2007). An upper bound of 10 should be sufficient,
considering that the maximum desired robustness is not too far from the estimated robustness
index at the end of step 1. In order to better illustrate the problem, Figure 18 presents the surface
of the search space for this example, where ρ = [ρ1 ρ2]

′ are the parameters of the PI controller
and J(ρ1,ρ2) is the cost, evaluated at each value of ρ . The agents of the optimization algorithms
are spawned in a radius of R = 5 as suggested in (113). The desired H∞ norm of S(z) to be
obtained, MSd , is set to 1.5. The penalty constant c from (111) is set as 1000, which should be
sufficient since c >> 1 (LUENBERGER; YE, 2015).

For all algorithms, 50 agents and 100 maximum iterations are set to the optimization
procedure. Each algorithm is executed 50 times with different agent spawn realization at each
run, but following the spawn radius suggestion, guaranteeing sufficient statistics to analyze the
results, which characterizes a Monte Carlo experiment. The parameters of PSO and ABC are set
as in Table 6. GWO and I-GWO algorithms do not require any additional hyperparameters to be
set except from number of agents and maximum number of iterations. At each iteration, the IR
is estimated with automatic choice of the number of coefficients, as aforementioned in the first
example.
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Figure 18 – Surface of the search space for example 2.
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7.2.3.1 Swarm intelligence algorithm results

For example 2, the average convergence curves of all algorithms are presented in Fig-
ure 19. The time that each algorithm took by iteration, considering the average of all 50 runs, and
the number of iterations needed to converge, considering a δ = 1×10−3 as criterion for defining
convergence, is shown in Table 11. The results were obtained in a personal computer with an
Intel Core I5 4670 3.40 GHz processor, with 8 GB of RAM - DDR3 1600 MHz. In this case, the
ABC algorithm took the longest time to converge, followed by I-GWO, PSO, and GWO.

Table 11 – Time for convergence of all algorithms for example 2.

Algorithm 1-iteration time (s) Iterations to converge Time to converge (s)
PSO 7.24 20 144.72
ABC 22.93 10 229.32
GWO 7.55 9 68.00

I-GWO 22.34 9 201.10

Source: the author.

The box plot with the best fitness values obtained for each algorithm is presented in
Figure 20, where PSO, ABC, and I-GWO obtained a satisfactory behavior in terms of mean,
standard deviation, and number of outliers, whilst GWO had more outliers than those aforemen-
tioned. The lower standard deviation is observed for the PSO algorithm. The conclusions over
Figure 20 are in agreement with the quantitative values shown in Table 12.

The H∞ norm of S(z,ρ), obtained with a validation PRBS signal of N = 10000 samples,
considers the best solution for each algorithms obtained at each run and is presented in the form
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Figure 19 – Average convergence curves for all algorithms considering a Monte Carlo
experiment of 50 runs for example 2.

Source: the author.

Figure 20 – Box plot of a Monte Carlo experiment with 50 runs for all algorithms in terms of
best fitness value obtained for example 2.

Source: the author.

Table 12 – Quantitative results from the box plot in terms of best fitness for example 2.

Algorithm median σ min max
PSO 0.49284 2.2270×10−9 0.49284 0.49284
ABC 0.49287 4.7174×10−5 0.49284 0.49303
GWO 0.49290 1.0414×10−2 0.49284 0.53568

I-GWO 0.49285 6.4636×10−6 0.49284 0.49286

Source: the author.
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of a box plot in Figure 21, where its quantitative values are shown in Table 13. All algorithms
presented similar median, except for GWO that had further outliers, satisfactory achieving close
values to the desired one (MSd ≈ 1.5). The I-GWO was the algorithm that had the least number
of outliers, whilst the PSO had the lower standard deviation. Similar conclusions over the results
can be also drawn from Figure 22, where the box plot of the obtained controller parameters
ρ = [kp ki]

′ are shown.

Figure 21 – Box plot of a Monte Carlo experiment with 50 runs for all algorithms in terms of
||S||∞ for example 2.

Source: the author.

Table 13 – Quantitative results from the box plot in terms of ||S||∞ for example 2.

Algorithm median σ min max
PSO 1.5169 1.4558×10−6 1.5169 1.5169
ABC 1.5165 4.4060×10−4 1.5148 1.5172
GWO 1.5133 8.4447×10−3 1.4825 1.5173

I-GWO 1.5168 1.2216×10−4 1.5165 1.5171

Source: the author.

To more clearly illustrate the difference between the controller obtained with swarm
intelligence algorithms and the controller obtained via VRFT, lets consider one of the I-GWO
solutions:

ρIGWO = [3.7946 1.8241]. (129)

The I-GWO-obtained controller is applied to the system in simulation, as well as the VRFT
controller from (127). A step signal is applied to both closed-loop systems and their output
is presented in Figure 24, and their related controller signals is presented at Figure 23. Some
relevant characteristics of the system are shown in Table 14, where the M̂S value is obtained via
data, following the method in Chapter 3, with a PRBS of N = 10000 samples as a validation

signal. Differently from example 1, the proposed method did not reduce the settling time, which
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Figure 22 – Box plot of the obtained kp (ρ(1)), ki (ρ(2)), and kd (ρ(3)) controller parameters
for all algorithms at 50 Monte Carlo experiments for example 2.

(a) kp (b) ki

Source: the author.

is expected since the penalty term will compensate the performance (H2, VRFT cost function)
part. The overshoot was reduced from 42 % to 29 %. Since the MS value was reduced to 1.5165,
the gain and phase margins were increased altogether. Notice that, in a real scenario, trespassing
the gain or phase margin values may result in, e.g., higher overshoot or even instability, resulting
in a fault, which is not admissible for several systems, such as power converters. Therefore, the
“sacrifice” of settling time is justified in cases where higher robustness is needed.

Figure 23 – Control signal for a reference step signal applied to the controlled plant with a
controller designed through the proposed method using I-GWO and the

VRFT-designed controller for example 2.

Source: the author.
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Figure 24 – Output signal for a reference step signal applied to the controlled plant with a
controller designed through the proposed method using I-GWO and the

VRFT-designed controller for example 1.

Source: the author.

Table 14 – Comparison between important characteristics of the closed-loop system with the
I-GWO-designed and the VRFT-designed controller for example 2.

Characteristic VRFT I-GWO
Settling time 5 s 14 s

Step overshoot 42 % 29 %
M̂S 2.3834 1.5165

Gain margin 4.72 dB 9.70 dB
Phase margin 37.8 ◦ 43.1 ◦

Source: the author.

7.3 FINAL CONSIDERATIONS

In this chapter, the application of the proposed technique was considered for two examples
- a second-order plant based on a Boost converter and a fourth-order plant based on the structure
of a SEPIC converter. For both cases, the assumed design requirements were too “aggressive”
and resulted in an MS > 2 for the controller designed with the VRFT. Nevertheless, the swarm
intelligence algorithms were applied to reduce the MS to 1.8 for the first example, and 1.5 for
the second example. For example 1, only the I-GWO obtained satisfactory results. In the case
of example 2, except from GWO, all algorithms achieved satisfactory results, with PSO and
I-GWO presenting the most desired results. For example 1, the slowest algorithm to converge was
I-GWO, and the fastest was GWO. On the other hand, example 2 showed the slowest convergence
behavior for ABC, whilst GWO was still the fastest of all algorithms to reach convergence.

86



84

8 CONCLUSION

This thesis proposed a robust solution to the Virtual Reference Feedback Tuning design
method by including a robustness constraint, in the form of a penalty, in its cost function, which
is solved via swarm intelligence algorithms and still maintains the necessity of only a single
batch of data of the VRFT. The proposed method was addressed and summarized in Chapter 6.

The H∞ norm of the sensitivity function is estimated using data as proposed in Chapter 3,
with the extension to a single-batch of data as shown in Chapter 6, at each iteration of the swarm
intelligence algorithm, via impulse response of the system, which is obtained in a regularized
fashion through the empirical Bayes method. The proposed method for estimating system
norms have been tested through Monte Carlo experiments and compared to a state-of-the-art
technique, presenting satisfactory results and lowering the mean percent error if compared to the
literature-available method for SISO systems.

The optimization procedure done with swarm intelligence algorithms aims to achieve
a desired value of H∞ norm of the sensitivity transfer function (MSd) while maintaining the
lowest possible cost in terms of reference tracking - the VRFT cost function, H2-based - by
changing the controller parameters. Four swarm intelligence algorithms - PSO, ABC, GWO, and
I-GWO - are used to minimize the problem and illustrate the proposed method with two plants
inspired on the structure of a Boost and a SEPIC converter in Chapter 7. For each illustrative
example, an initial controller is designed through VRFT resulting in an MS > 2. Then, the swarm
intelligence algorithms are applied to both cases, with the objective of reducing the H∞ norm of
the sensitivity function from a value greater than 2 to the desired norm value.

For each algorithm, 50 runs are executed with different realization of agents’ initialization.
For example 1 (plant G1), faster convergence was achieved by GWO, whilst the slowest was
observed for I-GWO. I-GWO was the algorithm that presented the least number of outliers and
the lower standard deviation regarding both best fitness evaluated at the cost function and the
obtained MS value. The median value of estimated MS for all algorithms was close to the desired
constraint value, as expected. For example 2 (plant G2), on the other hand, ABC showed the
slowest convergence time, wilst GWO was still the fastest of all algorithms to converge. PSO,
again, was the slowest algorithm to converge. Regarding best fitness value, PSO and I-GWO
presented the least number of outliers and lower standard deviation, while ABC presented
a still satisfactory behavior, and GWO achieved some further (and undesired) outliers. PSO
obtained the lower standard deviation in this case. Taking a look at the estimated H∞ norm of the
sensitivity transfer function for the second example, all solutions were acceptable, with median
close to the desired bound. Except from GWO, the other algorithms did not present noticeable
outliers.

The main contributions of this thesis can be summarized according to the following
topics:

1. The proposal of a swarm intelligence-based robust solution for VRFT;
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2. A data-driven one-shot method for estimating system norms purely based on impulse
response, with its extension to a single-batch of data for the proposed problem;

3. Development and release of a Python package for non-parametric data-driven impulse
response estimation (see Appendix A), resulting in the publication: “impulseest: A Python
package for non-parametric impulse response estimation with input–output data” (FIORIO;
REMES; NOVAES, 2021).

As for future works, it is suggested:

1. The inclusion of other constraints (e.g., for control effort and performance) simultaneously
with the robustness constraint in the optimization problem (109), to achieve specific
performance behavior whilst increasing the overall robustness;

2. Comparison of the proposed method with other type of metaheuristic optimization algo-
rithms, as evolutionary or physics-based;

3. Obtention of an approximate convex relation to the problem (109), allowing for the use of
simpler optimization techniques;

4. Application of a robustness constraint to the OCI, VDFT, or DD-LQR techniques;

5. Extend the current work for MIMO systems.
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APPENDIX A – PYTHON IMPLEMENTATION OF THE IMPULSEEST FUNCTION

A Python package for the non-parametric estimation of impulse response using input-
output data of a system was developed during the course of this thesis, resulting in the published
paper (FIORIO; REMES; NOVAES, 2021). This appendix describes in details the implementation
of the package and presents the main results of the paper.

A.1 SOFTWARE ARCHITECTURE

The package has two main modules, creation.py and impulseest.py. The first module
contains mainly initialization functions, to create necessary vectors and matrices that are called
by impulseest.py. Those functions are:

• create_alpha: returns the initial α hyperparameter vector, according to the chosen
regularization kernel;

• create_bounds: returns the upper and lower bounds for each hyperparameter in the
vector generated by create_alpha;

• create_Phi: creates and returns the vector of input regressors;

• create_Y: creates and returns the vector of output regressors.

The objective of placing boundaries at the hyperparameters of α is to guarantee a
low condition number for the covariance matrix Pn. The upper and lower bounds for each
hyperparameter is suggested in (CHEN; LJUNG, 2013), except for the lower bound of c, which
was set to 1×10−8 in order to avoid computational problems that was occurring during the test
phases of the package. All hyperparameters’ bounds are shown in Table 15.

Table 15 – Hyperparameters’ bounds.

Parameter Lower bound Upper bound
c 10−8 none (∞)
λ 0.7 (DI, TC) | 0.72 (DC) 1
σ 0 none (∞)

ι (DC only) -0.99 0.99

Source: (FIORIO; REMES; NOVAES, 2021).

The module impulseest.py is formed by two functions:

• impulseest: solves the cost function which results in the IR estimates;

• argument_check: checks if the arguments entered by the user are valid.

The impulseest function is the main function of the whole package and is described in detail at
Subsection A.2.
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A.2 FUNCTIONALITIES

The impulseest is the function responsible for the non-parametric estimation of IR
coefficients based on input-output data by minimizing cost function (21) in a computational
efficient way (detailed further in this subsection). The function has five possible input arguments:

• u [numpy array]: input signal (size N ×1);

• y [numpy array]: output signal (size N ×1);

• n [integer]: number of impulse response estimates (default is n = 100);

• RegularizationKernel [string]: regularization kernel - ’none’, ’DC’, ’DI’ or ’TC’ (default
is ’none’);

• MinimizationMethod [string]: bound-constrained optimization method used to minimize
the cost function - ’L-BFGS-B’, ’Powell’ or ’TNC’ (default is ’L-BFGS-B’).

The input array u and output array y are reshaped to an N × 1 shape in case they are
not provided that way. All input arguments are checked by argument_check before the impulse
response estimation. If an error is detected, an exception is raised to the user. All initial matrices
and arrays are, then, initialized by creation.py module.

There are two local functions inside impulseest function. The Prior function is responsible
for creating the prior covariance matrix Pn at each iteration, according to the current α values via
expressions (28), depending on the chosen regularization kernel.

The cost_function is the function that implements (21) and calls Prior at each iteration.
The regularized least squares can be implemented efficiently in two main ways: using the
Cholesky factorization or the QR factorization (GOLUB; LOAN, 1996). If Pn is ill-conditioned,
QR factorization presents more precise results than Cholesky factorization (GOLUB; LOAN,
1996). Literature has shown that Pn can be very ill-conditioned for IR estimation (CHEN;
OHLSSON; LJUNG, 2012). Therefore, the QR factorization-based algorithm (CHEN; LJUNG,
2013) and is described below.

Firstly, the thin QR factorization (GOLUB; LOAN, 1996) is precomputed as

[ΦT
N YN ] = Qd[Rd1 Rd2], (130)

where Qd is an N × (n+1) matrix, Rd1 is an (n+1)×n matrix, and Rd2 is an (n+1)×1 array.
After computing (130), cost_function is called and execute the following steps:

1. compute the Cholesky factorization L of Pn(α) (GOLUB; LOAN, 1996);

2. compute Rd1L;
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3. compute the QR factorization (GOLUB; LOAN, 1996)[
Rd1L Rd2

σ In 0

]
= QcRc; (131)

4. compute the cost
r2

σ2 +(N −n) logσ
2 +2log |R1|. (132)

The implementation in (FIORIO, 2021) uses Scipy’s optimization package (COMMUNITY,
2020) to solve the cost function, allowing the user to choose between ’L-BFGS-B’, ’Powell’ or
’TNC’ bound-constrained methods. Finally, the impulseest function returns the n first impulse
response coefficients.

A.3 ILLUSTRATIVE EXAMPLES

The impulseest is illustrated through an experimental case and through a collection of
transfer functions considering a whole grid of values - denoted here as test grid. Also, three
Monte Carlo experiments are executed for each regularization kernel. Quantitative and qualitative
analysis are made considering the obtaining results, mainly via box plots.

A.3.1 Experimental case

The experimental case embraces a Boost converter operating in continuous conduction
mode, designed to increase the voltage of a photovoltaic array. The converter is controlled by
a Digital Signal Processor (DSP) with a stabilizing proportional controller, as per the control
scheme shown in Figure 25. The parameters are presented in Table 16. The labels from Figure 25
that are not defined in Table 16 are: vr, vs, vt - phase input voltage of the rectifier; iL(t) - inductor
current; Q1 - MOSFET transistor; Q2 - output diode; vo(t) - instantaneous output voltage; Ro -
output load resistance; B1 and B2 - DSP buffers; LPF - low-pass filter; ADC - analog-to-digital
converter; KAD - feedback gain; y(k) - digital output voltage signal; u(k) - controller’s output;
PWM - pulse-width modulation block; and d̃(t) - duty cycle signal, applied to Q1.

The input-output signals for IR estimation are obtained as follows: an excitation signal
with a square waveform with 37 Hz of frequency, generated by the DSP, is used as reference
signal for d̃(t) and applied to the gate of the switch Q1; the output voltage signal vo(t) is acquired
from the Boost converter. Both signals are stored in the DSP memory and saved into a personal
computer and are presented in Figure 26.

The IR is then estimated using the impulseest package with no regularization and with reg-
ularization through the DC kernel (28), which result is shown in Figure 27. The non-regularized
estimation present higher variance, as expected. At the other hand, the increasing variance is
compensated with the DC kernel, resulting in a less noisy and more precise estimation.
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Figure 25 – Rectifier, Boost converter and the control scheme for this example.

Source: (FIORIO; REMES; NOVAES, 2021).

Table 16 – Parameters of the boost converter used as example.

Description Parameter Value
Output power Po 400 W
Input voltage vin 65 V ∼ 85 V

Nominal output voltage Yo 310 V
Nominal duty cycle Uo 0.72 pu
Switching frequency fs 50 kHz
Sampling frequency fa 50 kHz

Output filter inductance Lc 2.15 mH
Output filter capacitance Cc 2.2 µF

Input capacitance Cin 22.6 mF
Cut-off frequency LPF ωLPF 25 kHz

Source: (FIORIO; REMES; NOVAES, 2021).

A.3.2 Test grid

A second-order discrete-time transfer function was defined for the test grid, since many
processes can be modeled as such (NISE, 2000; SKOGESTAD; POSTLETHWAITE, 2005). The
considered transfer function has the structure of

Gtest(z) =
p1 + p2

λ

(z−λ )

(z− p1)(z− p2)
, (133)

with a time-step of 0.001 seconds and parameters defined as follows:

• the zero position λ varies from 0.22 to 3.16, including both minimum and non-minimum
phase zeros. The case where λ = 0 is not included for simplicity;
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Figure 26 – Normalized control reference signal (input) and normalized output voltage (output)
of the boost converter used for this example.
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Figure 27 – DC-regularized and non-regularized impulse response estimation of a boost
converter’s output voltage by control reference plant.
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• the poles are complex-conjugate poles, positioned according to p1,2 = ae± j·b, with
a ∈ (0.27, 0.978) and b ∈ (0.006, 0.82). All considered poles are within the unity
circle, resulting in stable systems.

The values assumed by a, b, and λ are presented in Table 17 and result in 512 possible combina-
tions.
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Table 17 – Values of a, b, and λ .

a b λ

0.272251 0.006738 0.223130
0.473223 0.013376 0.325814
0.598901 0.026554 0.475753
0.697120 0.052715 0.694693
0.779969 0.104649 1.014388
0.852692 0.207748 1.481207
0.918117 0.412419 2.162854
0.977970 0.818731 3.158193

Source: (FIORIO; REMES; NOVAES, 2021).

A PRBS with time-step of 0.001 seconds and N = 2000 samples is used as excitation
signal for the test grid. Each plant is simulated using SciPy’s dlsim function, obtaining an output
signal. Additive white Gaussian noise with an SNR of 6 dB was included in all data before the
estimations. The results are compared in terms of MSE in relation to the model-based (real)
calculated impulse response considering the first 200 terms of the IR.

Figure 28 shows a box plot with all MSEs obtained, for each kernel, considering all
possible parameters combination according to Table 17. Each parameter combination was run
twice, with different noise realizations, resulting in a total of 1024 runs for each kernel. Table 18
presents the quantitative values for the box plot in Figure 28. A lower MSE is observed at the
regularized cases in comparison with the non-regularized case. The most desired behavior is
seen at the TC and DC kernels. For each box plot, there are around 200 outliers out of the 1024
samples. The presence of outliers is expected since for each combination of parameters and
realization of noise, a different type of regularization may achieve better results.

Table 18 – Quantitative box plot results for the grid test MSEs.

Metrics none TC DI DC
mean (×10−3) 20.0 2.12 25.7 1.37

σ (×10−2) 26.3 3.53 40.4 1.98
min (×10−12) 36.9 7.40 10.7 16.9

max 6.16 1.01 10.1 0.50

Source: (FIORIO; REMES; NOVAES, 2021).

A.3.3 Monte Carlo experiments

In this sense, a Monte Carlo experiment is to estimate the IR of a discrete-time plant
with fixed parameters, with different noise realization at each run. Based on structures that are
common to appear in processes that can be approximated to second-order models, three plants
have been considered:

G1(z) =−0.25
(z−1.2)
(z−0.95)

; (134)
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Figure 28 – Box plot of all the MSEs obtained during the test for all kernels.

none TC DI DC
Kernels

0.0

0.5

1.0

1.5

2.0

2.5
M

SE
1e 6

Source: (FIORIO; REMES; NOVAES, 2021).

G2(z) = 0.5
(z−0.8)

(z−0.9−0.3 j)(z−0.9+0.3 j)
; (135)

G3(z) =−0.075
(z−1.2)

(z−0.7)(z−0.95)
. (136)

300 runs are considered for each regularization kernel. At each run, the data is corrupted with
additive Gaussian noise with an SNR of 6 dB.

Figures 29a, 29b, and 29c present the box plot of the obtained MSE at the estimation of
the IR of plants G1(z), G2(z), and G3(z), respectively, when compared to its model-based (real)
calculated IR. For plant G1(z), the TC kernel obtained the smallest interquartile range with a few
outliers. The DC kernel did not obtain outliers, although had the greatest interquartile range. DI
kernel presented a higher median than the other two kernels, being the least desired behavior for
this case. For plant G3(z), Figure 29c, the behavior of all three kernels were the same as those
observed for plant G1(z) at the box plot in Figure 29a. At the other hand, considering plant G2(z),
Figure 29b, the most desired behavior is clearly obtained by the DC kernel - smallest interquartile
range, least number of outliers, and lower median. The DI and TC kernels presented, respectively,
the second and third most desired behavior of all three kernels. The same conclusion can be
obtained from the quantitative values regarding the box plots, shown in Tables 19, 20, and 21,
for plants G1(z), G2(z), and G3(z), respectively.
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Figure 29 – Box plot of the Monte Carlo MSEs for plants G1(z), G2(z) and G3(z).

TC DI DC
Kernels

0.0

0.5

1.0

1.5

2.0

M
SE

1e 9

(a) G1(z)

TC DI DC
Kernels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

1e 8

(b) G2(z)

TC DI DC
Kernels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

1e 9

(c) G3(z)

Source: (FIORIO; REMES; NOVAES, 2021).

Table 19 – Quantitative box plot results (MSE) for plant G1(z).

Metrics TC DI DC
mean (×10−10) 4.73 18.7 4.44

σ (×10−11) 9.85 55.4 24.3
min (×10−12) 82.1 10.6 3.64
max (×10−10) 6.23 23.8 7.06

Source: (FIORIO; REMES; NOVAES, 2021).

Table 20 – Quantitative box plot results (MSE) for plant G2(z).

Metrics TC DI DC
mean (×10−9) 8.86 6.38 3.43
std (×10−9) 4.32 2.50 1.44

min (×10−10) 24.0 18.3 7.86
max (×10−8) 2.90 1.69 1.04

Source: (FIORIO; REMES; NOVAES, 2021).
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Table 21 – Quantitative box plot results (MSE) for plant G3(z).

Metrics TC DI DC
mean (×10−10) 8.44 30.4 7.52
std (×10−10) 1.57 13.6 4.61
min (×10−13) 3.44 13.3 1.62
max (×10−10) 9.61 40.4 1.16

Source: (FIORIO; REMES; NOVAES, 2021).

A.4 FINAL CONSIDERATIONS

The impulseest package has been implemented in Python, available at (FIORIO, 2021)
and distributed under an open-source MIT license, resulting in a published paper (FIORIO;
REMES; NOVAES, 2021). The empirical Bayes method with a QR-matrix computational
approach is considered to implement the function. Three regularization kernels are available
to the user - DC, TC, and DI - as well as the non-regularized option. The architecture of
the software implementation has been kept clean and simple, enabling most Python users
to make modifications as desired. Throughout the illustrative examples and experiments, the
functionalities of the impulseest function are tested. The results show that the use of regularization
provided more consistent results, mainly if the TC and DC kernels are considered, leading to
lower mean values and standard deviation for the MSE, when compared to other cases.
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