WATER PUMPING FROM PHOTOVOLTAIC CELLS USING A CURRENT-FED PARALLEL RESONANT PUSH-PULL INVERTER

Denizar Cruz Martins, Marcello Mezaroba, Ricardo Rüther and Ivo Barbi Federal University of Santa Catarina Department of Electrical Engineering Power Electronics Institute - INEP P.O. BOX 5119 - 88040-970 - Florianópolis - SC - Brasil Phone: 55(48) 231-9204 - Fax: 55(48) 234-5422

Abstract - This paper presents the analysis of a water pumping system from photovoltaic cells using a currentfed parallel resonant push-pull inverter, for residential applications in rural areas. The power structure is particularly simple and robust. It works in a ZVS commutation. Its main features are: one power processing stage, simple control strategy, lower harmonic distortion of the load voltage and natural isolation. The principle of operation, design procedure and experimental results are presented.

INTRODUCTION

The increasing research by alternative means for obtaining electrical energy in a simple manner, without pollution, that at the same time do not cause a hard ecologic impact on the environment, has led some professionals of the Electrical Engineering area to opt for solar energy conversion.

This kind of energy, apparently unfailing, presents a series of advantages, among them we can point out: non aggression to natural conditions, and no cause of any type of pollution. However, its treatment for industrial applications and even for residential ones, represents yet a relatively high cost. Nowadays the studies of the conception and materials manufacture area for photovoltaic cells are rapidly being developed with great success. The main objective is to obtain systems for converting solar energy into electrical energy in a simple, cheap, and safe way.

Considering the objective mentioned above, this paper describes a system for residential applications in a rural areas, where power from a utility is not available or is too costly to install. The system consists of a water pumping from photovoltaic cells using a current-fed parallel resonant push-pull inverter with battery storage.

Many works for residential applications are available in technical literature [1,2,3]. Their power circuits are somewhat sophisticated and use many controlled switches. The power structure proposed in this paper is particularly simple and robust. It works in a ZVS commutation. Its main features are: one power processing stage, simple control strategy, lower harmonic distortion of the load voltage, natural isolation and low number of controlled switches.

EQUIVALENT ELECTRIC MODEL OF THE WATER PUMPING

The pump used was an under-water vibratory pump. This kind of pump is very used due its simplicity, low cost, and robustness. Besides, this pump can effectuate the pumping in well with profundity around 80 meters. In normal conditions the pumping is approximately 1500 liters per hour. In Fig.1 we can observe the behavior of the pump for various profundities:

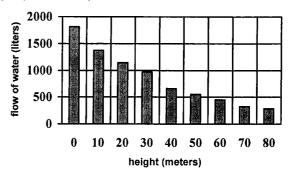


Fig. 1 - Performance of the pump

The technical characteristics of the pump are shown in table 1.

Table 1: Technical	characteristics	of the	pump
		DI4 10	0.00

Model	BK N° 3 - 80m
System	Vibratory
Apparent Power	1,100 VA
RMS Voltage	220 V
Frequency	60 Hz
Pressure Tube	3/4"
Weight	5.5 Kg
Flow of Water	1800 liters

The equivalent electric model is obtained experimentally, connecting the pump directly in the utility. The equivalent electric model is presented in Fig.2, where:

Vin = 217.8 V (Utility rms voltage)

Ip = 4.9 A (Pump rms current)

 $\Rightarrow \phi = 74.68^{\circ}$ (Phase angle)

f = 60 Hz (Operation frequency)

$$R_{p} = \frac{V_{in}}{I_{p} \times \cos\phi} = 170\Omega \tag{1}$$

$$L_{p} = \frac{V_{in}}{2 \times \pi \times f \times I_{p} \times \sin \phi} = 120 \text{mH}$$
⁽²⁾

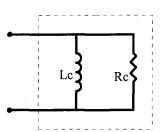


Fig. 2 - Electric model of the pump

PRINCIPE OF OPERATION

Considering the application mentioned in this paper the Current-Fed Self-Oscillator Parallel Resonant Push-Pull Inverter is proposed [4,5], of which the resonant capacitor is connected in parallel with the load (pump), in the secondary side of the transformer. Mosfet's were used for the main switches, simplifying the self-oscillator drive circuit. The complete structure, including the self-oscillator drive circuit, is shown in Fig. 3. To simplify the analysis, the following assumptions are made: the operation of the circuit is steady-state; the semiconductors are considered ideal; the transformer is represented by its magnetizing inductance; and the input current is maintained constant without ripple. The parallel resonant push-pull inverter has

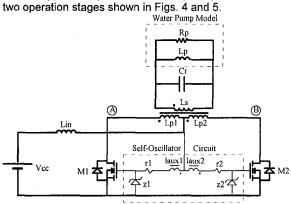


Fig. 5 - Proposed Structure

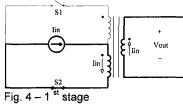
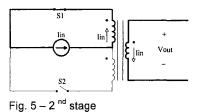
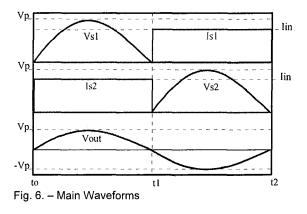



Fig. 4 – 1


Operation Stages:

1st Stage (t₀, t₁) - Fig. 4: This stage start in t₀. When the voltage Vout reaches zero the switch S1 turns off and the switch S₂ turns on instantaneously. The commutation of the switches occur to the zero voltage.

Due to the resonance between C_r and L_p , Vout increases sinusoidaly.

 2^{nd} Stage (t₁, t₂) - Fig. 5: By the time t₁, the switch S₂ turns off and the switch S1 turns on. The voltage Vout decreases sinusoidaly until the time t2, where a new operation period restart.

The main waveforms are shown in Fig. 6:

DESIGN PROCEDURE AND EXAMPLE

Specifications:

- P Input Data:
- Vcc = 12V (Converter input voltage)
- Water Pump Data: P
- Vout = 220 (rms voltage)
- Sout = 1085 VA (apparent power)
- Pout = 281 W (active power)
- Lp = 120 mH (equivalent parallel inductance)
- Rp = 170 Ω (equivalent parallel resistance)
- f = 60 Hz (operation frequency) $\Rightarrow \omega d$ = 377 rad/s
- $\eta = 80\%$ (efficiency).

RMS VAB voltage-

The rms VAB voltage is given by the following equation [3].

$$V_{AB(rms)} = \frac{Vcc \times \pi}{\sqrt{2}} = 26.65 V$$
(3)

Transformer Turns Ratio (a)

$$a = \frac{Vout_{(rms)}}{V_{AB(rms)}} = 8.25$$
(4)

Magnetizing inductance referred to the secondary side of the transformer (Lm_{sec})

$$Im_{sec} = 0.1 \cdot \frac{Sout}{Vout}$$
(5)

$$Lm_{sec} = \frac{V_{ABrms}}{\omega d \cdot Im_{sec}} = 4.85 H$$
 (6)

where: $Im_{sec} \rightarrow magnetizing current referred to the secondary side of the transformer.$

Input current and inductor (I_{in}, L_{in})

$$lin = \frac{V_{AB(rms)} \cdot a^2 \cdot \pi}{R_p \cdot \sqrt{2} \cdot h} = 29.7A$$

$$Lin = \frac{Vcc \cdot T_4}{0.1 \cdot lin} = 18 \text{ mH},(8)$$
where: T = 1/f
(7)

Resonant Capacitor (Cr)

$$Cr = \frac{4.Rp^2 + \sqrt{16.Rp^4 - 16.Rp^2.Leq^2.\omega d^2}}{8.Rp^2.Leq\omega d^2} = 58.7\mu F$$
(9)

where: Leq = Lp//Lm_{sec}

Number of Parallel Batteries

The average power and current delivery by the batteries will be:

$$\mathsf{P}_{\mathsf{Bav}} = \frac{\mathsf{Pout}}{n} \cong 350\mathsf{W} \tag{10}$$

$$I_{Bav} = \frac{P_{Bav}}{Vcc} \cong 30A$$
 (11)

The number of parallel batteries is given by:

$$N_{\rm B} = \frac{B_{\rm A} \cdot I_{\rm Bav}}{B_{\rm c}} = 1.5 \text{ batteries}$$
(12)

 $N_B \rightarrow minimum$ number of parallel batteries,

 $B_A \rightarrow$ battery autonomy: 3 hours;

 $B_c \rightarrow$ battery capacity: 60Ah (one hour rate).

Two lead-acid batteries (12V - 100Ah (20 hour rate)) were chosen.

Number of Photovoltaic Modules

The photovoltaic modules used in the design can deliver 3Ah (Ampere hours) with a solar radiation of 1.000 W/m^2 . In the worst case the average solar radiation, in our region (Florianópolis/Santa Catarina – Brazil), is about 2500 W/m^2 per day. Thus:

$$Ah_{d} = \frac{I_{Rs} \cdot R_{av}}{R_{s}} = 7.5 \text{ Ah}$$
(13)

where:

 $Ah_d \rightarrow Ampere-hours$ delivery per photovoltaic module for one a day.

 $R_{av} \rightarrow average \text{ solar radiation: } 2500 \text{ W/m}^2 \text{ / day (worst situation),}$

 $R_s \rightarrow$ standard solar radiation: 1000 W/m²,

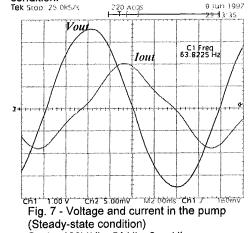
 $I_{RS} \rightarrow$ delivery of current by the photovoltaic module for the R_{av} radiation: 3Ah.

Thus, the number of photovoltaic modules is given by:

$$Np = \frac{Ah_L}{Ah_d} = 4 \text{ photovoltaic modules}$$
 (14)

where: $Ah_L \rightarrow Ampere-hours$ delivery to the load per day.

EXPERIMENTAL RESULTS


A laboratory prototype rated 300W was built to evaluate the proposed circuit. The specifications are given in the item IV. Mosfet's were used for the main switches.

The main waveforms of the complete system are presented below:

The experimental results of the converter show that the voltage across the pump is practically sinusoidal, and the self-oscillator drive circuit presented a good behavior for this application. Besides, the over-voltage across the pump and the Mosfet's does

not put in risk the structure. The start current of the converter is inside the limit specified by the manufacturer of the switches.

An efficiency of 80% was obtained at full load condition.

Scale: 100V/div; 5A/div; 2ms/div.

CONCLUSION

This paper has presented the analysis of a water pumping system from photovoltaic cells using a currentfed self-oscilator parallel resonant push-pull inverter operating a under-water vibratory pump, for residential applications in rural areas. The converter shows to be extremelly well adapted with this kind of pump, providing a sinusoidal voltage with low harmonic distortion without necessity of any type of modulation. According to the results obtained we have

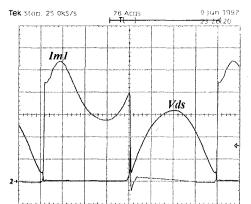


Fig. 8 - Voltage and current in the main switches (Steady-state condition) Scale: 10V/div; 10A/div; 2ms/div.

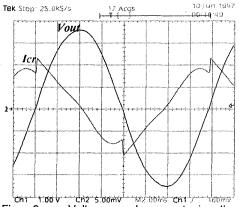
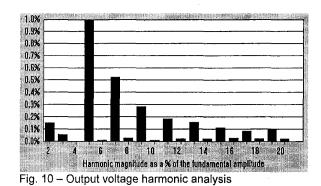



Fig. 9 - Voltage and current in the resonant capacitor(**Steady-state condition**) Scale: 100V/div; 5A/div; 2ms/div.

a DC-AC converter with the following features: it is particularly simple and robust; it uses low cost technology; it can operate with only one power processing stage; it has a simple control circuit with its terminals earthed in the same grouding; lower

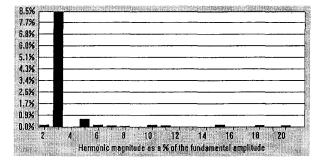


Fig. 11 – Harmonic analysis of the pump current

harmonic distortion of the load current, natural isolation and low number of control switches. Therefore, the authors believe that this topology can be very useful for some residential applications.

REFERENCES

[1] E. Muljadi, "PV Water pumping with a Peak-Power Tracker Using a Simple Six-Step Square-Wave Inverter", IEEE Trans. on Industry Applications, vol. 33, No. 3, May/June/1997, pp. 714-721.

[2] M. Ohsato at al, "Battery Charging Characteristics From Photovoltaic Modules Using Resonant DC-DC Converter", IEEE - IPEC'90, Tokyo, April/1990, pp .377-381

[3] U. Herrmann, H. G. Langer & H. Vander Broeck, "Low Cost DC to AC Converter for Photovoltaic Power Coversion in Residential Applications", IEEE PESC'93, June/1993, pp. 588-594.

[4] C. H. Lee, G. B, Joung, e G. H. Cho , "A Unity Power Factor High Frequency Parallel Ressonant Eletronic Ballast", IEEE 1990

[5] G. W. Brüning, "A New High-Voltage Oscillator", IEEE Trans. on Industrial Electronics, vol. IE-33, No. 2, May/1986, pp. 171-175.

[6] Pspice Circuit Analysis, Micosim Corporation, version 4.05, 1989