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a b s t r a c t

This paper presents the impulseest Python package, used for estimating the impulse response of a
system relying solely on input and output data. This package can provide estimates in a non-parametric
fashion either with regularization techniques. For the regularized estimates, impulseest function uses
the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least
squares algorithm. This function is tested considering an experimental situation, several dynamic
processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms
of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the
impulseest function with regularization using the proposed regularization kernels leads to low MSE for
all tested cases.
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1. Motivation and significance

The impulse response of dynamic systems can be used in
arious applications within different science subjects, such as
lectric power systems [1], computer networks [2], applied acous-
ics [3,4], instrumentation and measurement [5], communication
nd signal processing [6], and circuit fault detection [7]. It is
lso applicable in the representation of antennas response [8],
hysiological signal processing [9], and in the estimation of H1,
2 and H∞ system norms [10].
The estimation of the transfer function or the impulse re-

ponse of a system is of paramount importance for describing its
roperties [11], and has been implemented for different program-
ing languages, such as MATLAB R⃝ [12,13] and R [14]. However,

∗ Corresponding author.
E-mail address: luan.lvf@edu.udesc.br (Luan Vinícius Fiorio).

despite the popularity of Python language for both scientific and
technical purposes [15,16], which shows an increase of system
identification related software releases in the last years [8,17],
there is a lack of methods and algorithms for estimating the
impulse response of a system from data in the Python con-
text. In this sense, this work aims to contribute by developing
a data-driven impulse response estimation tool using Python
language.

The estimation of the impulse response of a system based on
input–output data follows system identification theory [18–20],
and can be done in a parametric based approach [11,21] and also
as a non-parametric type of estimation [18]. When estimating
the impulse response with the Least Squares (LS) algorithm in
a non-parametric approach, which is commonly achieved by the
use of high-order FIR models [22], the variance of the estimation
increases linearly with the order of the model [22]. This leads to
a large Mean Squared Error (MSE) and may lead the LS algorithm
ttps://doi.org/10.1016/j.softx.2021.100761
352-7110/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to diverge [23]. A solution to this problem is to use regularization
along with the standard least squares algorithm [24].

Considering the given context, a non-parametric impulse re-
ponse estimation package relying solely on input–output data
as developed in Python and is detailed in this paper. The im-
lementation is done according to the Bayesian perspective pre-
ented in [25] and a package is made available in the PyPI indexes.

.1. Theoretical background

The transfer function of a discrete-time Linear Invariant-Time
ystem can be described as

0(z) =

∞∑
i=1

g0
i z

−i, (1)

where g0
i , i ∈ N, is the impulse response of the system and z is

the time-shift operator. As known from linear systems and signal
theory [26], the output of the system can be obtained, then, by

y(k) = G0(z)u(k) + v(k), (2)

in which u(k) is the input signal and v(k) is an additive noise.
he ideal impulse response (1) can be truncated to a finite num-
er, resulting in a Finite Impulse Response (FIR) model. This
ay, least squares method can be used to estimate the impulse
esponse [27]. But a problem may arise in this situation: the vari-
nce of the estimate increases linearly with the FIR model order,
.e., the final terms, that should go to zero for stable systems,
ill be poorly estimated and result in several nonzero values. To
ounteract this issue, one must use some form of regularization,
iming to obtain a sparse solution, i.e., a solution that presents
ore zero estimated parameters.
The standard least squares problem is formulated as

in
θ

∥YN − ΦT
Nθ∥

2
2, (3)

where YN are the N output regressors, such that YN = [y(n +

) y(n+2) ... y(N)]T , in which n is the number of impulse response
coefficients to be estimated,1 ΦN are the N input regressors, given
by ΦN = [φ(n+1) φ(n+2) ... φ(N)], where φ(k) = [u(k−1) u(k−

) ... u(k − n)]T , and θ are the n truncated impulse response
oefficients. Those coefficients are the LS solution of (3), given as:

ˆ = [ĝ1 ĝ2 ... ĝn]T = (ΦNΦT
N )

−1ΦNYN . (4)

Since the solution (4) is non-regularized, it has increased
variance and non-zero high-order terms in the estimated impulse
response. To counteract this issue, regularization can be included
in the optimization problem, which is commonly represented by
the weighted 2-norm of the vector θ , resulting in the regular-
ization term θ TDθ , where D is the weighting matrix, also known
as the regularization matrix. In this sense, the inclusion of this
regularization term in (3), leads to the new optimization problem:

min
θ

N∑
k=n+1

(y(k) − φT (k)θ )2 + θ TDθ. (5)

Notice that this regularized problem tries to find a solution
that minimizes both the MSE of the estimates and the 2-norm of
the parameter vector, which should result in a sparser solution
when compared to the non-regularized one. However, such opti-
mization problem introduces a new unknown, represented by the
regularization matrix D, and that should be estimated alongside
with θ . Differently of the initial non-regularized problem (3), the
regularized solution cannot be explicitly determined.

1 The first n outputs of the data set are not used to allow φ(k) to be formed.

An efficient approach for finding a solution to (5) is through
the Bayesian perspective [27,28]. The idea is to consider the
estimation parameter a random variable and given the obser-
vations, search for some a posteriori distribution. At first, it is
considered a parameter θ with zero mean and covariance matrix
Pn, such that θ ∼ N (0, Pn), and a white noise with σ 2 variance,
described by v(k) ∼ N (0, σ 2). From those considerations, an a
posteriori distribution of θ given the vector YN can be obtained as
follows [27]:

θ |Yn ∼ N (θ̂ apost
N , Papost

N ) (6a)

θ̂
apost
N = ((σ 2(ΦNΦT

N )
−1)−1

+ P−1
n )−1(σ 2(ΦNΦT

N )
−1)−1θ̂ LS

N (6b)

Papost
N = ((σ 2(ΦNΦT

N )
−1)−1

+ P−1
n )−1 (6c)

in which apost means a posteriori, the ’hat’ marker indicates an
estimation and θ̂ LS

N is the solution of the non-regularized least
squares case (4). The a posteriori estimate θ̂

apost
N will be equal to

the regularized estimate if [27]

D = σ 2P−1
n . (7)

In a few words, the solution of (5) depends on the covariance
matrix Pn and on the noise variance σ 2, besides the LS solution
θ̂LS , and they should be estimated jointly with θ .

In order to estimate the covariance matrix Pn, it can be written
in a parametrized manner, according to some known prior co-
variance matrices obtained through the Bayesian approach — also
known as kernels. The three kernels for the impulseest package,
here chosen through the results provided in [25], are the diag-
onal/correlated (DC) kernel PDC , the diagonal (DI) kernel PDI and
the tuned correlated (TC) kernel PTC , respectively given by:

PDC (k, j) = cρ|k−j|λ(k+j)/2
; (8)

PDI (k, j) =

{
cλk, if k = j;
0, else;

(9)

PTC (k, j) = c min(λj, λk). (10)

An array of hyper-parameters α = [c λ ρ σ ] is denoted for the
prior distribution – in the case of DC kernel or α = [c λ σ ] in the
case of DI or TC kernels – which can be estimated through the
maximum likelihood approach, according to the empirical Bayes
method2 [28], applied in

YN ∼ N (0, σ 2IN−n + ΦT
NPn(α)ΦN ), (11)

resulting in

α̂ = min
α

Y T
NΣ(α)−1YN + log detΣ(α) (12)

with

Σ(α) = σ 2IN−n + ΦNPn(α)ΦT
N . (13)

2. Software description

The impulseest function provides a non-parametric estimation
of the impulse response using only input–output data of a pro-
cess. The estimation can be regularized or not. In the sections
below, the package impulseest is detailed.

2.1. Software architecture

The package is structured in two modules: impulseest.py and
creation.py, which are described in the following subsections. The
main module is impulseest.py, which contains the main function.
The creation module initializes arrays and matrices.

2 Similar approaches can be achieved with other Bayesian methods as
well [29,30].
2
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Table 1
Hyper-parameters’ bounds.
Parameter Lower bound Upper bound

c 10−8 none (∞)
λ 0.7 (DI, TC) | 0.72 (DC) 1
σ 0 none (∞)
ρ (DC only) −0.99 0.99

2.1.1. Creation.py
This module contains functions that create arrays and matri-

es that are not called during the minimization procedure, so
here is no need to define them inside the impulseest function.
hose functions called by the main impulseest function during the
nitialization of the variables are:

• create_alpha: returns the initial alpha (hyper-parameter)
array according to the chosen regularization method;

• create_bounds: returns the bounds of each hyper-parameter
to be considered in the minimization procedure, according
to the chosen regularization method;

• create_Phi: returns the input regressor matrix;
• create_Y: returns the output regressor matrix.

The bounds that guarantee a low condition number for the Pn
atrix, for each regularization kernel, are given in Table 1 and
efined in [27]. The lower bound of c is included to avoid singular
alue decomposition divergence in the minimization procedure
sing SciPy’s minimization function.
The idea of using a separated module to initialize some vari-

bles is a choice of organization. One of the main objectives
as to keep the code as clean and clear as possible to ease

uture modifications by its users. To allow average – and even
eginner – users to make modifications as desired, the code was
mplemented in procedural programming, avoiding the need of
ackground knowledge in object-oriented programming.

.1.2. Impulseest.py
This is the main module of the package, which has two func-

ions:

• impulseest: the main function of the package, it estimates
the impulse response of a system in a non-parametric fash-
ion based only in input–output data. Its details and imple-
mentation are described in the next subsection;

• argument_check: a function that checks if the arguments
given by the user are valid.

.2. Software functionalities

The package proposes the non-parametric estimation of the
mpulse response of a system relying solely on input–output data.
his estimation can be regularized or not, as chosen by the user.
he main function of this package is impulseest and have five
ossible arguments:

• u [numpy array]: input signal (size N × 1);
• y [numpy array]: output signal (size N × 1);
• n [integer]: number of impulse response estimates (default

is n = 100);
• RegularizationKernel [string]: regularization method —

‘none’, ‘DC’, ‘DI’ or ‘TC’ (default is ‘none’);
• MinimizationMethod [string]: bound-constrained optimiza-

tion method used to minimize the cost function — ’L-BFGS-
B’, ‘Powell’ or ‘TNC’ (default is ’L-BFGS-B’).

The impulseest function begins by reshaping the input (u) and
utput (y) data arrays to an N ×1 shape. All the input arguments

are then checked in the argument_check function, raising an ex-
ception if something is not correct. The initialization of the global
variables (arrays, matrices) is done through the functions in the
creation module.

The first local function defined inside impulseest is Prior. This
function writes the Pn matrix of (7) according to the chosen
regularization kernel, as presented in (8), (9) and (10). If no kernel
is chosen, Prior returns None. It has α as an argument, which is
updated during the minimization procedure.

1 def Pr ior ( alpha ) :
2 for k in range (n) :
3 for j in range (n) :
4 i f ( Regularizat ionKernel== ’DC ’ ) :
5 P[k , j ] = alpha [0]∗ ( alpha [2]∗∗abs (k j ) ) ∗( alpha [1]∗∗ ( ( k+ j ) /2) )
6 e l i f ( Regularizat ionKernel== ’ DI ’ ) :
7 i f ( k== j ) :
8 P[k , j ] = alpha [0]∗ ( alpha [1]∗∗k)
9 else :

10 P[k , j ] = 0
11 e l i f ( Regularizat ionKernel== ’TC ’ ) :
12 P[k , j ] = alpha [0]∗min( alpha [1]∗∗ j , alpha [1]∗∗k)
13 else :
14 None
15 return P

The second local function, named cost_func, is the cost function
of the minimization procedure. An efficient implementation of
the least squares algorithm, in terms of computational com-
plexity, can be based on two main approaches: the Cholesky
factorization or the QR factorization [31]3. According to [31], solv-
ing least squares with QR factorization is more precise than with
the Cholesky factorization if — in this case - Pn is ill-conditioned.
As presented in the literature, Pn can be very ill-conditioned
when estimating the impulse response of a process [27]. There-
fore, the QR factorization approach is chosen to be implemented,
according to [25], as described below.

The thin QR factorization

[ΦT
N YN ] = Qd[Rd1 Rd2] (14)

is precomputed, where Qd is an N × (n + 1) matrix, Rd1 is an
(n+1)×n matrix and Rd2 is an (n+1)×1 array. Then, the function
cost_func is defined and has the following calculation steps:

1. compute the Cholesky factorization L of Pn(α);
2. compute Rd1L;
3. compute the QR factorization[

Rd1L Rd2
σ In 0

]
= QcRc; (15)

4. compute the cost

r2

σ 2 + (N − n) log σ 2
+ 2 log |R1|, (16)

which solves the problem presented in (12).

1 #precomputation
2 aux0 = qr ( hstack ( ( transpose ( Phi ) ,Y) ) ,mode= ’ r ’ )
3 Rd1 = aux0 [0:n+1 ,0:n]
4 Rd2 = aux0 [0:n+1 ,n]
5 Rd2 = Rd2 . reshape ( len (Rd2) ,1)
6
7 #cost function
8 def cost_func ( alpha ) :
9 L = cholesky ( Pr ior ( alpha ) )

10 Rd1L = Rd1 @ L
11 to_qr = bmat ( [ [ Rd1L , Rd2 ] , [ alpha [ len ( alpha ) 1 ]∗ I , zeros ( ( n , 1 ) )

] ] )

3 Solving regularized least squares in a computational efficient way is still a
subject of research nowadays [32,33].
3
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2 R = qr ( to_qr ,mode= ’ r ’ )
3 R1 = R[0:n , 0 : n]
4 r = R[n , n]
5 cost = ( r∗∗2) / ( alpha [ len ( alpha ) 1]∗∗2) + (N n)∗ log ( alpha [ len

( alpha ) 1]∗∗2)
6 + 2∗sum( log ( abs ( diag (R1) ) ) )
7 return cost

The minimization procedure uses the scipy.optimize.minimize
unction and is implemented as follows:

1 A = minimize ( cost_func , a lpha_init , method=
MinimizationMethod , bounds=bnds )

2 alpha = A . x
3 L = cholesky ( Pr ior ( alpha ) )
4 Rd1L = Rd1 @ L
5 to_qr = bmat ( [ [ Rd1L , Rd2 ] , [ alpha [ len ( alpha ) 1 ]∗ I , zeros ( ( n , 1 ) )

] ] )
6 R = qr ( to_qr ,mode= ’ r ’ )
7 R1 = R[0:n , 0 : n]
8 R2 = R[0:n , n]
9 i r = L @ pinv (R1) @ R2
0 i r = i r . reshape ( len ( i r ) ,1 )

where alpha_init is the initial alpha generated by create_alpha,
nds is the array with bounds generated by create_bounds and
he method is chosen by the user, according to the documenta-
ion of the SciPy’s module [34]. The QR factorization of (15) is
ecalculated for the new alpha and then the impulse response is
btained, which is reshaped to n × 1 and returned to the user.

. Illustrative examples

In this section, the impulseest function is illustrated through
xamples. At first, an experimental case is shown to illustrate the
mpulse response identification for a real-world case. Then, a test
s executed considering a grid of values that form a whole set of
ransfer functions, which is denoted here by test grid. The ob-
ective is to investigate the behavior of the function for different
ases. In the sequence, three Monte Carlo simulations are done for
ach regularization kernel, where a statistical analysis is realized
o evaluate the robustness of the methods to deal with data
orrupted by noise. All obtained results are depicted in through
ox plots and analyzed both qualitatively and quantitatively.

.1. Experimental case

In order to illustrate the proposed package, an experimental
etup of a boost converter operating in continuous conduction
ode, used to increase the voltage of a photovoltaic array, is
onsidered. The boost converter is controlled by a Digital Signal
rocessor (DSP) with a stabilizing controller. Fig. 1 shows the
oost converter circuit fed by a three-phase diode rectifier and
he diagram of the control scheme, which parameters are pre-
ented in Table 2. The output voltage signal used for the impulse
esponse estimation was acquired by the DSP.

The labels from Fig. 1 that are not defined in Table 2 are:
r , vs, vt — the voltage of each phase of the AC input to the
ectifier; iL(t) — the inductor current; Q1 — the MOSFET transistor
switch); Q2 — the output diode; vo(t) — the instantaneous output
oltage; Ro - the load that results in Po; B1 and B2 — buffers
f the DSP; LPF — a low pass filter with cut-off frequency ωLPF ;

ADC — analog to digital converter; KAD — feedback gain; y(k) -
digital output voltage signal after KAD compensation; controller
— the controller structure applied digitally; u(k) — the output
of the controller; PWM — pulse-width modulation block, which
transforms the input signal into a pulse-width modulated signal;
and d̃(t) — duty cycle signal that is applied to the gate-driver of
the MOSFET Q .

Table 2
Parameters of the boost converter used as example.
Description Parameter Value

Output power Po 400 W
Input voltage vin 65 V∼85 V
Nominal output voltage Yo 310 V
Nominal duty cycle Uo 0.72 pu
Switching frequency fs 50 kHz
Sampling frequency fa 50 kHz
Output filter inductance Lc 2.15 mH
Output filter capacitance Cc 2.2 µF
Input capacitance Cin 22.6 mF
Cut-off frequency LPF ωLPF 25 kHz

Fig. 1. Rectifier, boost converter and the control scheme used for this example.

Fig. 2. Normalized control reference signal (input) and normalized output
voltage (output) of the boost converter used for this example.

The input (excitation) signal used for this experiment is a
square wave with 10 V of amplitude and 37 Hz of frequency.
The square wave signal is sufficiently rich to estimate the impulse
response and simple enough to be generated in a DSP. This signal
is used as the controller’s reference. The output signal is the
output voltage of the boost converter. As it can be seen from
Fig. 2, there is a considerable amount of noise in the output signal.
Both signals were normalized with amplitudes from −10 to 10 V
for this estimation procedure.

The impulse response of the output voltage by the control
reference plant of the boost converter used in this experiment
is estimated through impulseest, using the DC kernel and also
with no regularization kernel. The IR’s are shown in Fig. 3. The
1
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Fig. 3. DC-regularized and non-regularized impulse response estimation of a
boost converter’s output voltage by control reference plant.

non-regularized case suffers from the increase of variance in
the impulse estimates as the order increases, which generates a
highly noisy impulse response. At the other hand, the regulariza-
tion kernel compensates the variance increase, resulting in a less
noisy impulse response.

3.2. Test grid

A test grid was defined by using a second-order discrete-time
lant with variable parameter values and step time of 0.001 s. The
odel was chosen as a second-order system once many processes
an be modeled as such [35,36]. The transfer function of the plant
o be tested with impulseest is

test (z) =
p1 + p2

λ

(z − λ)
(z − p1)(z − p2)

, (17)

here p1, p2 and λ are defined as follows:

• λ, the zero of the plant, varies from ≈0.22 to ≈3.16, embrac-
ing both minimum and nonminimum-phase systems. It is
worth to mentioning that the case where the zero is exactly
1 is not included for simplicity;

• the poles px, x = 1, 2 are complex-conjugate poles, written
as px = ae±j·b, where a ∈ (0.27, 0.978) and b ∈

(0.006, 0.82). Therefore, all possible poles are inside the
unit circle and all considered systems are stable.

able 3 shows the considered values for a, b and λ.
The input signal of the test grid is a PRBS and follows the same

haracteristics described in Section 3.1. The output signals are
btained by simulating the response of each plant to the input
ignal using the SciPy’s dlsim function. A randomly generated
Gaussian white noise is added to both signals before each of the
impulse response’s estimation.

3.3. Statistical analysis

The result of the grid test are the box plots presented in Fig. 4,
with values in Table 4, which has been obtained through 1024
estimations for each regularized kernel and the non-regularized
case, varying a, b and λ with equally spaced steps, comparing the
irst 200 terms of the estimated against the model-based impulse
esponse. As can be seen, the regularized estimations resulted
n lower MSE than the non-regularized ones for most cases. The
maller interquartile range is observed in the TC kernel, whilst
etween the regularized cases, the DI kernel has the largest one.
For each box plot, there are around 200 outliers out of the

024 samples. That happens because the system under test is

Fig. 4. Box plot of all the MSEs obtained during the test for all kernels.

Table 3
Values of a, b and λ.
a b λ

0.272251 0.006738 0.223130
0.473223 0.013376 0.325814
0.598901 0.026554 0.475753
0.697120 0.052715 0.694693
0.779969 0.104649 1.014388
0.852692 0.207748 1.481207
0.918117 0.412419 2.162854
0.977970 0.818731 3.158193

Table 4
Quantitative box plot results for the grid test MSEs.
Metrics (none) TC DI DC

mean (×10−3) 20.0 2.12 25.7 1.37
σ (×10−2) 26.3 3.53 40.4 1.98
min (×10−12) 36.9 7.40 10.7 16.9
max 6.16 1.01 10.1 0.50

changing its parameters and for each resulting system, a different
type of regularization may achieve better results. At the same
time, at each test, there is a different noise realization, what
makes the outliers even more present. In summary, both the plant
and noise have been changed together.

3.3.1. Monte Carlo
A Monte Carlo experiment, in this subject, is to estimate the

impulse response of a fixed discrete-time plant, with a time
step of 0.001 s, a determined number of times, with only dif-
ferent noise realizations at each execution. Three Monte Carlo
experiments have been considered, one for each of the following
discrete-time systems:

G1(z) = −0.25
(z − 1.2)
(z − 0.95)

; (18)

G2(z) = 0.5
(z − 0.8)

(z − 0.9 − 0.3j)(z − 0.9 + 0.3j)
; (19)

G3(z) = −0.075
(z − 1.2)

(z − 0.7)(z − 0.95)
. (20)

These structures of models are common to appear when pro-
cesses are modeled and approximated to a first or second-order
model [35].

For all cases, input and output signals have been corrupted
by independent additive noises. The applied noise signals have
the same attributes as detailed in Section 3.1. For each system
5
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Fig. 5. Box plot of the Monte Carlo MSEs for plants G1(z), G2(z) and G3(z).

Table 5
Quantitative box plot results (MSE) for plant G1(z).
Metrics TC DI DC

mean (×10−10) 4.73 18.7 4.44
σ (×10−11) 9.85 55.4 24.3
min (×10−12) 82.1 10.6 3.64
max (×10−10) 6.23 23.8 7.06

it has been considered 300 realizations, for each one of the
regularization kernels.

Fig. 5(a) shows the box plot for all three regularization kernels
t the estimation of the impulse response of plant G1(z). TC
as the smaller interquartile range and DC the largest, but DC
chieved a lower mean than DI. There are no outliers for the DC
ernel, whilst there are a few for DI and TC. The quantitative
esults for this system are presented in Table 5.

The second plant G2(z) has an oscillatory behavior caused by
the complex-conjugate poles. As can be seen in Fig. 5(b) and from
Table 6, all three regularization kernels have outliers, with best
results being achieved by the DC kernel in terms of mean of the
box plots and size of the interquartile range.

The third case, with plant G3(z), presented in Fig. 5(c), shows
a similar behavior to that of plant G1(z). Again, TC kernel has the
mallest interquartile range and DI the higher MSE values. The
uantitative results of G3(z) are presented in Table 7.

. Impact

The intention of the impulseest package is to impact
esearchers in the academic and industrial scenarios, who have
n application to the impulse response of some system, based

Table 6
Quantitative box plot results (MSE) for plant G2(z).
Metrics TC DI DC

mean (×10−9) 8.86 6.38 3.43
std (×10−9) 4.32 2.50 1.44
min (×10−10) 24.0 18.3 7.86
max (×10−8) 2.90 1.69 1.04

Table 7
Quantitative box plot results (MSE) for plant G3(z).
Metrics TC DI DC

mean (×10−10) 8.44 30.4 7.52
std (×10−10) 1.57 13.6 4.61
min (×10−13) 3.44 13.3 1.62
max (×10−10) 9.61 40.4 1.16

only in input–output data. The impulseest function/package was
only available in MATLAB R⃝ [12] and R [14], therefore, the need of
a Python function to estimate IR was felt, as it is an open-source,
widely used language in various subjects of science and one of the
most in-demand and popular [15,16] high-level object-oriented
programming language nowadays.

5. Conclusions

The impulseest package is a Python package for the non-
parametric estimation of the impulse response of a system based
only in input–output data. The package takes a Bayesian approach
to the problem by using the Empirical Bayes method, with an
QR-matrix approach to the implementation in order to lower
the computational complexity. The user can choose between
6
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a regularized estimation – with three available regularization
kernels – or not regularized. The architecture of the software is
clean and simple, enabling most of the average Python users to
fork the GitHub repository and make modifications as desired.
The main function of the package, impulseest, obtained low MSE
n estimating the impulse response of all the pants that were
ested, mainly if regularization was used. The impulseest package
s distributed under an MIT license and it is open-source.

The main results show that the use of regularized estimates
f impulse responses using DC and TC kernels provided more
onsistent results, once they lead to smaller means and standard
eviations of the MSE, along with a reduced number of outliers,
hen compared to the other cases. As a future work, one could
tudy and compare the use of another Bayesian methods in the
stimation of hyper-parameters in order to achieve a more ef-
icient implementation; regarding application, one can highlight
he use of impulseest for data-driven estimation of system norms
or robust control design.
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