RETIFICADOR BIDIRECIONAL COM ALTO FATOR DE POTÊNCIA COM CONTROLE POR VALORES MÉDIOS INSTANTÂNEOS IMPLEMENTADO NO DSP TMS320F2812

Marcello Mezaroba, Dr¹; Samir Ahmad Mussa, Dr²; Fabiano Luz Cardoso, Eng¹; Marcio Silveira Ortmann, Eng ; Danilo de Mello Ruiz^{1.}

¹⁾ Universidade do estado de Santa Catarina – UDESC Lab. Eletrônica Potência – LEPO Caixa Posta: 334 – Joinville / SC mezaroba@joinville.udesc.br

Abstract – Este artigo mostra o retificador bidirecional com alto fator de potência, com o controle do conversor implementado digitalmente no DSP de última geração Texas TMS320F2812. Serão abordados temas como modelagem do conversor e do controle, técnicas de projeto, simulação, implementação e programação do DSP em linguagem de alto nível.

Keywords – Controle digital, modelagem digital, retificador bidirecional, retificador com alto fator de potência.

I. INTRODUÇÃO

Como acontece em diversas áreas do conhecimento humano, a aplicação do controle digital sobre processos analógicos fora vislumbrado muito antes que o desenvolvimento tecnológico permitisse sua aplicação. Entretanto, hoje o controle digital pode ser aplicado a maioria dos processos, desde que corretamente estruturado e modelado, graças a evolução dos processadores digitais.

Paralelo ao controle digital que vem encontrando uma usabilidade cada vez maior devido aos grandes benefícios que se pode obter, tem-se o retificador trifásico reversível com alto fator de potência e suas variações que são circuitos amplamente utilizados tanto em pesquisas acadêmicas como em aplicações industriais. Pode-se encontrar na literatura muitos trabalhos que utilizam esta estrutura, formando uma grande base de conhecimento sedimentada ao longo do tempo, sendo que muitos destes trabalhos foram desenvolvidos utilizando o controle clássico e suas premissas como ponto de partida para o projeto dos controladores do circuito.

Com o intuito de seguir a evolução natural da eletrônica de potência associada à evolução do controle digital e reaproveitar toda a sólida base de conhecimento estruturada a partir do controle clássico de sistemas é que se desenvolveu este trabalho. No seu desenvolvimento, serão apresentadas algumas considerações necessárias à análise do retificador e dos controladores, uma metodologia de projeto para os controladores digitais que utiliza conhecimentos prévios do projeto do controle analógico e simulação. Todo este desenvolvimento inicial serviu como subsídio para que o controle fosse implementado no moderno processador digital de sinais TMS320F2812 com o software desenvolvido em linguagem de alto nível. ²⁾ Universidade Federal de Santa Catarina – UFSC Instituto de Eletrônica de Potência _INEP Caixa Postal: 5119 – Florianópolis / SC samir@inep.ufsc.br

II. MODELAGEM DO CIRCUITO

O retificador de corrente é um circuito versátil e de grande aplicabilidade nos dias de hoje. Seu princípio de funcionamento é descrito em detalhes na literatura, onde se pode encontrar com detalhes as etapas de operação, formas de onda, procedimentos de especificação da parte de potência e das malhas de controle analógicas.

A versatilidade do circuito lhe é conferida graças a flexibilidade do circuito trabalhar com praticamente qualquer forma de onda para a corrente de entrada. Esta característica é obtida escolhendo-se um sinal de referência adequado para a aplicação, de modo a gerar um sinal de corrente bem definido nas fontes de entrada. Esta topologia de circuito também pode ser encontrada na literatura com o nome de circuito inversor trifásico.

A. Controle Analógico

Para a definição do sistema de controle do retificador, utiliza-se como planta o circuito da ponte retificadora bidirecional trifásica apresentado na Figura 1. A Figura 2 apresenta o diagrama em blocos simplificado do controle analógico por valores médios instantâneos.

Fig. 2. Diagrama em blocos do controle por valores médios instantâneos.

B. Controle Digital

Para que a implementação de uma metodologia de projeto para controladores digitais seja possível, algumas modificações na análise são necessárias devido à adequação do controle clássico a realidade do controle digital.

Dentre as alterações existentes entre o controle analógico e o digital, pode-se perceber na Figura 3 que a referência da forma de onda da corrente de entrada passa a ser gerada internamente ao DSP. Deste modo, pode-se obter como referência uma senóide com baixa distorção harmônica e independente das deformações existentes no sinal de entrada. Outra particularidade do sistema digital é a necessidade de se amostrar os sinais analógicos da planta e transportá-los para o universo discreto interno ao DSP, deste modo, surgem no controle blocos referentes aos amostradores e retentores de ordem zero (sample e hold).

Para finalizar a transferência da estrutura de controle do mundo analógico para o mundo discreto, foram colocados no sistema filtros anti-aliasing para limitar o espectro de freqüência do sinal amostrado. Verifica-se também o aparecimento do ganho referente ao conversor analógico digital.

A Figura 3 representa o diagrama de controle da malha de corrente dentro do universo digital, ao passo que a Figura 4 representa o diagrama de controle da malha de tensão de saída.

Fig. 3. Diagrama em blocos do controle digital de corrente.

Fig. 4. Diagrama em blocos do controle digital de tensão.

C. Modelagem dos controladores

Como já foi comentado anteriormente, o circuito do retificador reversível é amplamente abordado na literatura e estas referências nos fornecem o modelo do circuito para a corrente de entrada e a partir do barramento CC de saída.

Ambos os modelos são válidos apenas para o mundo contínuo, plano s. Para a discretização dos modelos contínuos, aplica-se a relação $z = e^{s.Ta}$ transportando a modelagem ao plano z, plano discreto, onde T_a é o período de amostragem.

De posse das funções de transferência em z, utiliza-se a transformação bilinear de Tustin para converter o modelo do plano z para o plano w, onde o projeto discreto pode ser executado utilizando as mesmas técnicas de Bode que são utilizadas para o plano s. A relação entre z e w é apresentada em (1).

$$z = \frac{1 + \frac{T_a}{2}w}{1 - \frac{T_a}{2}w} \quad e \qquad w = \frac{2}{T_a}\frac{z - 1}{z + 1} \tag{1}$$

Resultando em (2) para a planta de corrente e em (3) para a planta de tensão.

$$\frac{i(w)}{d(w)} = \frac{V_o}{\frac{2}{3}LV_T} \cdot \frac{1 - \frac{T_a}{2}w}{w}$$
(2)
$$\frac{V_o(w)}{I_p(w)} = A_1 \cdot \left(\frac{1 - e^{-T_a}/A_2}{1 - e^{-T_a}/A_2} + w \cdot \frac{T_a}{2} \left(e^{-T_a}/A_2 - 1\right)}{1 - e^{-T_a}/A_2} + w \cdot \frac{T_a}{2} \left(1 + e^{-T_a}/A_2\right)}\right)$$
(3)

onde

e

$$A_{1} = \frac{3.V_{P}.V_{o}}{2.P_{o}}$$
(4)

$$A_2 = \frac{C_o N_o^2}{P} \tag{5}$$

onde:

٠	\mathbf{V}_{o}	⇔ Tensão de saída;
٠	V_p	⇒ Tensão de pico por fase;
٠	Po	⇒ Potência de saída;
٠	L	⇒ Indutância de entrada;
٠	Co	⇒ Capacitância de saída;
٠	Та	⇒ Período de amostragem;
٠	V_{T}	⇒ Tensão de pico da onda triangular para
		comparação de geração do PWM;
•	I.	⇔ Corrente de nico de entrada

Corrente de pico de entrada

Para que possa ser traçado um paralelo entre as funções de transferência nos planos s e w, é necessário que se tenha em mente que o fato de o plano w apresenta certa distorção quando comparado com o plano s, principalmente para freqüências próximas e acima da freqüência de amostragem. Para baixas freqüências, quando comparadas à freqüência de amostragem, distorção dos valores а pode ser desconsiderada, fazendo com que o mapeamento entre o plano s e w sejam similares. Porém, a medida em que a freqüência aumenta, aproximando-se da freqüência de amostragem, a distorção aumenta, fazendo necessário o uso de correções para converter valores entre os planos s e w.

Traçando um comparativo da resposta em freqüência nos planos s e w para a planta de corrente, comparativo mostrado na Figura 5 para o módulo e na Figura 6 para a fase do sistema, pode-se verificar que o comportamento da planta digitalizada é bastante próximo do comportamento da planta analógica até a freqüência de 1.10³rad/s.

Fig. 5. Comparativo entre a resposta em freqüência do módulo da planta corrente analógica e digitalizada.

Fig. 6. Comparativo entre a resposta em freqüência do fase da planta corrente analógica e digitalizada.

As Figuras 7 e 8 mostram a resposta em módulo e fase, respectivamente, para a planta de tensão analógica e amostrada.

Fig. 7. Comparativo entre a resposta em freqüência do módulo da planta tensão analógica e digitalizada.

Fig. 8. Comparativo entre a resposta em freqüência do fase da planta tensão analógica e digitalizada.

III. PROJETO DOS CONTROLADORES

A. Especificação do Conversor

Os controladores que servem como exemplos neste artigo foram projetados para que o sistema final atenda aos seguintes requisitos de projeto:

- $V_{o} = 375V$ ⇒ Tensão de saída;
- $V_{p} = 180V$ ⇒ Tensão de pico por fase;
- $P_{0} = 2,5kW$ ⇒ Potência de saída:
- L = 1,37mH⇒ Indutância de entrada;
- $C_{o} = 1500 \mu F$ ⇒ Capacitância de saída;
 - fa = 20KHz⇒ Freqüência de amostragem;
- fs = 20KHz⇒ Freqüência de chaveamento;

- $K_i = 0,1$
- \Rightarrow Ganho do sensor de corrente; $K_v = 7,5.10^{-3}$ ⇒ Ganho do sensor de tensão;
 - \Rightarrow Ganho do multiplicador;
 - $K_{M} = 1$ $K_{AD} = 211/3,3$ \Rightarrow Ganho do conversor A/D;
 - $K_{AA} = 1$
 - \Rightarrow Ganho do filtro anti-aliasing;
 - $V_{\rm T} = 3750$ ⇒Valor de pico da onda triangular
 - do modulador PWM para sinais simétricos:

D. Procedimento de Projeto

O procedimento de projeto pode ser estruturado da seguinte forma

- Obter a função de transferência da planta em z a partir da discretização do processo;
- Transformar a função do plano z para o plano w;
- Definir o período de amostragem T_a;
- Projetar o controlador através dos gráficos de Bode, num processo idêntico ao que acontece para o plano s;
- Uma vez definido o controlador, voltar para o plano z;
- Voltar do plano z para o domínio do tempo através da técnica de frações parciais ou expansão em série de potências;
- Definir e programar o algoritmo de controle através da . equação de diferenças.

Considerando que a proposta a ser seguida para a definição do controlador baseia-se na metodologia de projeto através da resposta em freqüência para o plano discreto w, onde o ganho e a fase são determinados em função da freqüência, os requisitos de projeto são consonantes com a metodologia de projeto para sistemas contínuos no plano s e são citadas na literatura como sendo:

- Margem de fase entre $45^{\circ} e 90^{\circ}$;
- A inclinação na curva de ganho para o sistema em laço aberto deve ser de -20dB/década;
- Erro estático nulo:
- A freqüência de cruzamento da curva de ganho para o sistema em laço aberto deve ser pelo menos quatro vezes menor do que a freqüência de chaveamento do modulador PWM:
- A freqüência de chaveamento deverá ser pelo menos igual à freqüência de amostragem.

E. Projeto do Controlador de Corrente

Com base no diagrama em blocos da Figura 3 e na especificação do conversor apresentada anteriormente, obtém-se que a função de transferência de malha aberta para a corrente é:

$$FTMA_{i} = H_{i}(w) \cdot \frac{V_{o} \cdot K_{i} \cdot K_{AD}}{\frac{2}{3} \cdot L \cdot V_{T}} \cdot \frac{1 - \frac{I_{o}}{2} \cdot w}{w}$$
(6)

Pela análise de (6), verifica-se que o sistema tem um pólo na origem e um zero em alta freqüência. Para este tipo de planta, optou-se em utilizar um controlador do tipo PI (Proporcional Integral) com uma função similar a apresentada em (7).

$$H_i(w) = \frac{k_{Hi}.(w + v_z)}{w}$$
(7)

onde:

- k_{Hi} é o ganho do controlador;
- v_z é a freqüência do zero.

Utilizando os critérios de projeto já apresentado, tem-se:

$$H_i(w) = 1,893 \frac{(w+628,32)}{w}$$
 (8)

Passando do plano w para o plano z em seguida fazendo a transformada inversa para se obter a equação de diferenças, chega-se a (9)

$$y_i(n) = 1,92274.x_i(n) - 1,86326.x_i(n-1) + y_i(n-1)$$
 (9)

Para ilustrar a influência que o controle trará a planta de corrente, é ilustrada na Figura 9 a resposta em freqüência para a planta, o controlador e para o sistema resultante composto pela planta e controlador, todos em malha aberta.

Fig. 9 Resposta em freqüência do sistema resultante planta de corrente + controlador em malha aberta

F. Projeto do Controlador de Tensão

Com base no diagrama em blocos da Figura 4 e na especificação do conversor apresentada anteriormente, obtém-se que a função de transferência de malha aberta para a tensão é:

$$FTMA_{\nu}(w) = K_{AD} \cdot K_i \cdot \frac{V_O(w)}{I_P(w)}$$
(10)

Pela análise de (10), verifica-se que será necessário um controlador PI para atender os requisitos de projeto. Desta forma, a função de transferência do controlador, $H_v(w)$, será:

$$H_{v}(w) = \frac{k_{Hv} \cdot (w + v_{z})}{w}$$
(11)

Onde

- k_{Hv} é o ganho do controlador;
- v_z é a freqüência do zero.

Pelos critérios de projeto já apresentados, tem-se:

$$H_{\nu}(w) = \frac{6,579.(w+13,508)}{w}$$
(12)

Passando do plano w para o plano z em seguida fazendo a transformada inversa para se obter a equação de diferenças, chega-se a (13)

$$y_{v}(n) = 6,5812.x_{v}(n) - 6.5768.x_{v}(n-1) + y_{v}(n-1)$$
(13)

Para ilustrar a influência que o controle trará a planta de tensão, é ilustrada na Figura 10 a resposta em freqüência para a planta, o controlador e para o sistema resultante composto pela planta e controlador, todos em malha aberta.

Fig. 10 Resposta em freqüência do sistema resultante planta de tensão + controlador em malha aberta

IV. SIMULAÇÃO

As simulações foram realizadas no software $Simulink^{TM}$ que é parte integrante do pacote $Matlab^{TM}$, Durante o processo de simulação verificou-se a bidirecionalidade do conversor com uma regeneração de energia com potência nominal para o tempo t=0,15s.

O resultado encontrado para a tensão no barramento CC de saída (Figura 11) pode ser considerado satisfatório, com um ripple de tensão muito baixo e com sobre tensão de cerca de 10% da tensão do barramento.

Considerando a corrente de entrada, (Figura 12), a forma de onda comporta-se como esperado, com um pequeno ripple de alta freqüência devido ao chaveamento. O processo de inversão da corrente com relação a tensão de entrada durante o chaveamento da carga para que ocorra a regeneração se dá de forma controlada, conforme o esperado.

V. DADOS EXPERIMENTAIS

Para a etapa de implementação prática, estamos utilizando o *DSP TMS320F2812* da *Texas Instruments* (a partir do módulo didático eZdsp da Spectrum Digital Inc.), programado a partir da linguagem de alto nível C++ através do compilador *Code Composer*.

A estrutura funcional do software de controle do conversor pode ser representada a partir de um diagrama esquemático ilustrativo, o qual representa os blocos do software a serem implementados internamente ao *DSP*, conforme mostra a Figura 13.

Fig 13 – Diagrama em blocos do programa do DSP

Para a operação do conversor como retificador, com o fluxo de energia das fontes trifásicas para o barramento de tensão contínua, tem-se o funcionamento do conversor ilustrado a partir da Figura 13 que ilustra a tensão e corrente para uma das fases de entrada e a Figura 14 que mostra a corrente nas fases em conjunto com a tensão de barramento; em ambos os casos o conversor está operando com carga nominal.

Fig 13 - Tensão e corrente na entrada do conversor

Fig 14 - Correntes de entrada e tensão de barramento

Fig 15 – Ripple de corrente e de tensão – Zoom sobre a forma de onda da corrente e tensão do barramento.

Através da análise das curvas apresentadas nas Figuras 13, 14 e 15, pode-se assumir que o ripple de tensão na carga pode ser considerado nulo e que as tensões e correntes de entrada estão em fase, sendo que a tensão apresenta uma taxa de distorção harmônica de 3,18% e a corrente uma taxa de 11,8%. O fator de potência final da estrutura operando no ponto nominal é de 0,99.

A Figura 16 mostra a composição harmônica do sinal de corrente. Observa-se a presença das harmônicas pares devido a pequena distorção no pico das formas de onda de corrente, o que gera uma certa assimetria entre o ciclo positivo e negativo das mesmas. Esta assimetria gera uma pequena componente resultante de corrente contínua (off-set) a qual é responsável pelas harmônicas pares da estrutura.

Fig 16 – Composição harmônica do sinal de corrente de entrada.

Simulando um chaveamento de carga de 100% para 50% e de 50% para 100%, o conversor apresenta as respostas dinâmicas apresentadas abaixo, nas figuras Figura 17 e Figura 18 respectivamente.

Fig. 17 - Chaveamento de carga de 100% para 50%

Com base nas Figuras 17 e 18 pode-se concluir que o chaveamento de carga gera certa oscilação na tensão de barramento, como já era esperado, mas o sistema de controle da estrutura atua rapidamente de forma a compensar este distúrbio no sistema. A sobre e subtensão existente no barramento devido ao decréscimo e acréscimo de carga no

sistema ficam dentro do limite estimado através da simulação. O tempo do transitório também esta dentro do que era esperado.

Fig. 18 – Chaveamento de carga de 50% para 100%

VI. CONCLUSÃO

Neste artigo foi apresentado de forma sucinta o circuito de potência, a análise do conversor, o projeto dos controladores, alguns resultados de simulação e experimentais para o controle do retificador bidirecional trifásico com elevado fator de potência implementado no DSP TMS320F2812..

A partir deste trabalho pode-se concluir que o uso das técnicas de projeto para sistemas de controle analógico podem ser empregadas também no projeto de controle em sistemas digitais, respeitando-se as devidas ressalvas necessárias.

Do ponto de vista do projeto dos controladores, ressalta-se que o projeto deve ser feito com base na resposta em freqüência para o sistema amostrado, já que dependendo do valor da freqüência de amostragem, a reposta do sistema amostrado pode apresentar distorções quando comparado com a planta analógica as quais devem ser consideradas na hora do projeto.

Do ponto de vista da implementação, ressalta-se que toda a programação do software foi realizada em linguagens de alto nível. Isto trás inúmeras vantagens como maior portabilidade do software, permite reaproveitamento de rotinas por parte de outros usuários, traduzindo-se na rapidez de programação Porém, percebeu-se que devido ao uso de compilador, encontramos limitações para elevar a freqüência de amostragem a valores da ordem de 500kHz, como era o objetivo inicial, mas faz-se necessário avaliar com mais critérios que limitações o uso de linguagem de alto nível tem com relação ao uso da linguagem assembler do DSP. Com uma freqüência de amostragem mais elevada, a distorção da planta digitalizada e os efeitos do filtro anti-aliasing podem ser ignorados na faixa de freqüência em que o controle atua. O conversor tem o seu melhor desempenho trabalhando em condições nominais de carga, para valores reduzidos de carga ocorre uma pequena defasagem entre as tensões e correntes

de entrada que degradam um pouco o fator de potência da estrutura, acredita-se que este pequeno desvio possa ser corrigido através da mudança do controlador de corrente. O erro estático gerado a partir destes controladores tende a ser compensado pelo controlador PI da tensão de barramento, conforme comprovado via simulação.

VII. REFERÊNCIAS

- C. L. Barczak, Controle Digital de Sistemas Dinâmicos – Projeto e Análise, Editora Edgard Blücher Ltda, São Paulo, SP, 1994
- [2] K. Ogata, *Modern Control Engineering*, Prentice Hall, Hew Jersey, USA, 1997
- [3] I. Barbi, *Projeto de Fontes Chaveadas*, Edição do Autor. Florianópolis, SC, 2001
- [4] I. Barbi, Y. R. Novaes, F. P. Souza e D. Borgonovo, "Retificadores PWM Trifásicos Unidirecionais com Alto Fator de Potência", Eletrônica de Potência, vol. 7, n° 1. Novembro 2002.
- [5] L. C. Tomaselli, Controle de um pré-regulador com alto fator de potência utilizando o controlador DSP TMS320F243, Dissertação de Mestrado, INEP – UFSC, Florianópolis, SC, 2001

- [6] D. Lindeke, Projeto de um Filtro Ativo Paralelo de IkVA Usando técnicas de Controle Analógico e Digital, Dissertação de Mestrado, INEP – UFSC, Florianópolis, SC, 2003
- [7] A. R Borges, Retificador de Corrente Trifásico com Correção de Fator de Potência e Regeneração de Energia, Dissertação de Mestrado, INEP – UFSC, Florianópolis, SC, 1996
- [8] M. Mezaroba, Inversores com Comutação Suave e Grampeamento Ativo Empregando a Técnica de Utilização da Energia de Recuperação Reversa dos Diodos. Tese de Doutorado, INEP – UFSC, Florianópolis, SC, 2001.
- [9] K.M. Chug, A.Wu, T. Hidajat, "Using the TMS320C24X DSP Controller for Optimal Digital Control", *Application Report SPRA295*, Janeiro 1998.
- [10] S. Choudhury, "Average Current Mode Controlled Power Factor Correction Converter Using TMS320LF2407A", Application Report SPRA902, Abril 2003.
- [11], S. A. MUSSA ; H. B. MOHR,. "Three-Phase Three-Level Unity Power Factor PWM Rectifier Using DSP". ISIE'2003 International Symposium on Industrial Electronics, 2003, Rio de Janeiro, 2003.